MonAMI by example

Paul Millar <p. m | | ar @hysi cs. gl a. ac. uk>

Table of Contents

O~NO O WNPE

14110l [¥ (ox i) PSP SOPPPTRRPPPPN 2
. SIMple Periodic MONITOIING ...ttt et e e e e et e e et e e et e e e e eenaaes 6
. Selecting and merging available data ... 9
. Caching and NamMed SAMPIEScuuiii e e et e e eaaas 15
. ON-demand MONITOTTNGuiii et e e e e e et e e e e eaeaeens 18
. Plotting data With Gangliaooeuiiiii e 22
. USINg Nagios tO trigger @lErtSc.uu it et 27
- Writing data into MYSOL ... et ea e 31

MonAMI by example

1. Introduction

This tutorial aims to teach you how to configure MonAMI. It is split into different sections, each
exploring a specific example configuration file. The example files start off simple, but they get more
complex asyou proceed. If you find you are having difficulty, try rereading the previous section: you
might have missed something there.

The subject of this tutorial is MonAMI: a data-collection framework that can provide monitoring
information for different monitoring systems. MonAMI consists of adaemon and a set of plugins. The
plugins provide the useful functionality, such as collecting monitoring information about resources or
sending that information to monitoring systems. Thiswill help you monitor your computer resources,
allowing you to provide areliable service.

MonAMI works in collaboration with existing monitoring systems. It collects data describing your
services and sendsit to amonitoring system, or multiple systems. MonAMI itself does not draw pretty
graphs, provide trend analysis, or aert you if aservice islooking suspicious. Thisis deliberate: there
are many monitoring packages that provide these features aready. Instead, it concentrates on getting
information out of whatever services you are running.

Since MonAM I is designed not to favour a particular monitoring system, this tutorial will begin by
concentrating on the basics without requiring any particular monitoring system. Later on, the sections
will concentrate on using MonAMI in more specific situations. These section may use specific appli-
cations or monitoring systems. Wherever possible, aternatives are given.

Typographical conventions

This tutorial uses symbols and different typeface to label the different material. Sections that contain
contents of afile use adlightly smaller mono-spaced font and are contained within a box.

With most file contents included, there are some small circled numbers. When copying the text files,
don't copy them! They are not part of the file's contents, but are to draw your attention to specific
points of interest. These points are explained immediately below the text.

Thefollowing is an example shell script. The text also includes some circled numbers:

#!/bin/sh O
#0 A sinple exanple script

echod "Hello, world."
00 theshell torun; in this case, the Borne shell.

O comment lines start with a hash symbol (#) and are ignored.
0 theecho command produces some output.

Other sections display typical output from running a program. They are also displayed in a mono-
spaced font within a box. For example, here isthe result of running the above script:

paul @onachai n: ~$./hello.sh
Hel l o, world.
paul @onachai n: ~$

g Extranotes...

Throughout the tutorial there are severa notes. These are separate short sections, marked with this quill pen icon.
These notes contain additional information that give a greater breadth of understanding, but are extra: you can skip
them if you want to.

Prerequisites

For this tutorial, you need:

MonAMI by example

» A computer with MonAMI installed. MonAMI itself doesnot needr oot accessfor any monitoring
activities: it can run quite happily as anormal user. Perhaps the easiest way of getting started isto
install one of the binary packages, available from the MonAMI webpage.

» The ability to edit the MonAMI configuration files. The packaged version of MonAMI uses files
inthe/ et c directory and have permission settings that requirer oot privilegesto edit. If you are
running aversion of MonAMI you have compiled for yourself then the location of the configuration
files may differ and you may be able to edit these files without r oot privileges.

« about 15 minutes of sparetimeper section. Thisisan estimate of how |ong going through an example
will take. If you have more time, you are encouraged to try altering the example configuration and
seeing what happens.

 Various sections have specific requirements:

Section 5 KSysGuard or telnet. KSysGuard isastandard part of the KDE desktop and isavail-
ablefor GNU/Linux and Macintosh computers. There areinstructionsfor using tel-
net instead of KSysGuard, allowing people who don't have KSysGuard to appreci-
ate on-demand monitoring.

Section 6 Ganglia. This section is based on using MonAMI with Ganglia.

Section 7 Nagios. This section shows how to configure MonAMI to generate alerts within
Nagios.

Section 8 MySQL. This section shows how to store data within a MySQL database. Y ou will
need an account (username and password) that has CREATE and INSERT privi-
leges for some existing database within MySQL.

Installing MonAMI

Asit says above, this tutorial assumes you have installed MonAMI on some computer, so the tutorial
does not provide detailed information on how to install MonAMI. However, for the sake of compl ete-
ness, some comments are included.

Y ou can download MonAMI from the SourcefForge download area. There are links to there from the
MonAMI home page [http://monami.sourceforge.net/]. Y ou should find the latest version available as
binary and source RPM S, along with a compressed tar file containing the source.

The binary RPMs are split into a core RPM, several plugin RPMs and a documentation RPM. The
core RPM provides basic infrastructure and a collection of pluginswith no external dependencies. The
various plugin RPMs provide additional functionality, but also include some dependencies on other
libraries. The documentation RPM contains PDF and HTML versions of the User Guide.

Thereisalso ayum and apt repository for these RPMs. These are hosted at ScotGrid. To use the yum
repository, copy the following text as/ et ¢/ yum r epos. d/ nonami . r epo.

[monanmi]

name=MonAM -- your friendly nonitoring daenon

Use either "308" or "44" bel ow

#baseur| =http:// monam . scot gri d. ac. uk/ sci entific/ 308/ $basearch/
baseur| =http://nonani . scotgrid. ac. uk/ scientific/ 44/ $basearch/
enabl ed=1

Configuration files

With the prepackaged version of MonAMI, configurationisheldinthe/ et ¢/ nonami . d directory.
In the following examples, you should create afile/ et ¢/ monani . d/ exanpl e. conf . Each ex-
ample is self-contained, so you should overwrite thisfile for each example.

http://monami.sourceforge.net/
http://monami.sourceforge.net/

MonAMI by example

Each section is based around a theme and each theme is usually based around a specific example
configuration file. This section is no exception. However, this section's configuration file is rather
boring as it will have no effect: MonAMI will run identically either with or without this file. It will
run until told to stop.

If you do create the example configuration file, save the content as /et c/ nonani . d/
exanpl e. conf , but make sure you don't copy the circled numbers: they indicate points of interest.

O
MNAM by Exanple, Section 1
#H#

O
This file does nothing

Here are some points of interest:

0 Comments can be added by starting aline with a hash symbol (#). These comment lines are ig-
nored. If aline startswith any other character, then it isnot acomment line and will be processed.

O Completely blank lines are also allowed. They, too, are completely ignored, so you can include
them anywhere within a configuration file.

Starting and stopping MonAMI

MonAMI will normally detach itself from the shell and redirect its output somewhere (tosysl og by
default). Thisisdesirable behaviour for adaemon; but, for the purposes of these tutorial exercisesitis
better if MonAMI runs both without detaching from the shell and providing more verbose messages.

To achieve this, run the MonAMI executable directly use the command / usr/ bi n/ nonam d -
f v. You can stop MonAMI by typing Ctrl+C.

When starting MonAMI, you will see output like:

paul @onachai n: ~$ /usr/bin/nonamd -fv
Loadi ng configuration file /etc/nonamn .conf
pl ugi n apache | oaded
pl ugi n anga | oaded
There will be many similar lines.
plugin tcp | oaded
pl ugin tontat | oaded
Starting up..

When MonAMI is shutting down, you will see the following:

Waiting for activity to stop..
Shutting down threads..
paul @onachai n: ~$

Usually, when told to shutdown, MonAMI isn't doing anything. If so, then MonAMI will quickly
exit. If MonAMI is collecting data when told to shutdown, you may see a slight delay between the
“wai ting for activity to stop...”and“shutti ng down t hreads. .." messages.
This delay is expected, and will last only for aslong as MonAMI needs to finish the current activity.
If the data source is slow, it may take afew seconds.

If shutting down takes longer than a minute, MonAMI will assume something has gone wrong and
a bug within MonAMI or one of the plugins has been found. If this happens, it will record some
debugging information and try harder to stop. Naturally, you should never see this happen!

Getting more information

The information here aims to be self-complete. However, you may be left wondering about some
specific aspect and want to know more. Y ou can get more information from:

MonAMI by example

» Thepackaged versionsof MonAMI include manual pagesfor how to run monamid and the MonAMI
configuration file format: monamid(8) and monami.conf(5).

* The MonAMI User Guide contains awealth of information about MonAMI, including documenta-
tion on all the plugins and how to configure MonAMI. It is available in PDF and HTML formats,
both as an RPM package and from the MonAMI home page [http://monami.sourceforge.net/].

« If you have aquestion that isn't answered by any of these references, feel freeto join the MonAMI
users mailing list and ask it there.

http://monami.sourceforge.net/
http://monami.sourceforge.net/

MonAMI by example

2. Simple periodic monitoring

In this section we will tell MonAMI to record everything it knows about something periodically. This
will introduce periodic monitoring, which is perhaps the most common monitoring activity.

Plugins and Targets

Beforelooking at the configuration, it woul d hel p to understand two conceptswithin MonAMI: plugins
and targets.

Plugins are fundamental to MonAMI. They allow information to be gathered, stored, or otherwise
processed. Most plugins come in one of two types: either monitoring or reporting.

Monitoring plugins are those that provide information. A monitoring plugin understands how to ob-
tain information from a specific service, program or other source of information. All the peculiarities
with obtaining that information are concealed within the plugin, so they provide a uniform method of
obtaining information. The filesystem and apache plugins are examples of monitoring plugins. Both
are available within the default package.

Reporting plugins will accept monitoring information. They will either store thisinformation or send
it to some monitoring system. The snapshot plugin is an example of areporting plugin. It will store
all information it is given as afile, overwriting any existing content.

There are yet other plugins that lead a more complex life, such as the sample and dispatch plugins.
Don't worry about these just yet: they'll become clear further along. Some of the aspects of the sample
plugin are mentioned here, but both plugins will be explored morein later sections.

Inal, MonAMI comeswith many useful plugins and the number growswith each release. They areall
described within the MonAMI User Guide and brief synopses are included within the system manual
(man page) entry on the configuration file format.

Targets are configured instances of a plugin. They exist only when MonAMI isrun and are described
by the MonAMI configuration files; for example, whilst the mysgl plugin knows (in principle) how to
monitor aMySQL server, itisatarget (that usesthe mysgl plugin) that knows how to monitor aspecific
MySQL server instance running on a particular machine, using a particular username and password.

Aswith plugins, a monitoring target is atarget that provides MonAMI with information. It is a con-
figured monitoring plugin. Likewise, a reporting target is a target that accepted information and is
based on areporting plugin.

An easy way to illustrate the difference between plugins and targetsis to consider monitoring several
partitions. The filesystem plugin will monitor a partition. To monitor multiple partitions, one would
configure multiple filesystem targets. Each of these targets will use the filesystem plugin. Although
there may be severa filesystem targets, there is only one filesystem plugin.

Configuration file

The example configuration file used in this section will tell MonAMI to measure the current status of
theroot filesystem every two secondsand store all thedatainthefile/ t np/ monani -fi | esyst em
Copy the text below and store it asthe/ et ¢/ nonani . d/ exanpl e. conf file.

#it
MNAM by Exanple, Section 2
#it

Monitor our root filesystem
[filesystenm] O

location =/ O

nane = root-fs [

MonAMI by example

Record latest f/s stats every two second
[sanple] O

read = root-fs

witel = snapshot

intervalO = 2

The current filesystemstatistics
[snapshot] O

O

filenane = /tnp/nonam -fil esystem

The following points are worth noting:

O

The configuration fileis split into stanzas, each of which startswith aline containing the name of
aplugin in square brackets. In this case, the filesystem plugin is mentioned. Each stanza creates
anew target that uses the specified plugin.

Stanzas can have multiple attribute lines describing how the target should behave. Each attribute
line has a keyword, followed by an equals sign, followed by the value (white space is also al-
lowed). Some plugins require certain attributes to be specified; other attributes are optional.
Each target has aname, which must be unique. The narre attribute allows you to configure what
atarget's name should be.

Sample targets collect together data and send it somewhere. They are also somewhat special:
you can specify any number without explicitly giving them unique names.

On receiving fresh data, the sample target will deliver it to the targets named in thewri t e
atribute.

If ai nt erval attributeisconfigured, thiswill betriggered periodically. It states how often the
sample target will request fresh data.

The snapshot plugin accepts data and writes it to disk. The sample sends data to the snapshot
target, which then writes this data to the disk.

If there is no nane attribute, the target will take its name from the plugin. Naturally, this only
works if asingletarget (at most) is created for each plugin.

The sample'si nt er val attribute states how often the sample section will request fresh data. This
happens every two seconds in this example (written as 2s or just 2). Thei nt er val can also be
specified in minutes (e.g., every five minutesis 5n), in hours (e.g., every six hours 6h), or in combi-
nations of these (e.g., 1h 30m).

Z

Fast enough?

MonAMI'sinternal time-keeper workswith atime granularity of one second: once-per-second isthe maximum rate
that MonAMI can gather data. In fact, thereisno particular technical reason that for forcing this maximum rate, but
there is also no compelling reason to increase the maximum sampling rate.

Atitsheart, MonAMI isasynchronous. It can also gather and store data very quickly. When MonAMI is configured
for event-based monitoring, it can store data with low latency: far faster than once per second. If you think that
once-per-second is too slow, perhaps you can recast your monitoring requirement as one based on event-based
monitoring.

Running the example

Make sure you run MonAMI for at least two seconds. When starting up, MonAMI attempts to spread
itswork evenly to reduce the impact of monitoring. It doesthis by starting the timed monitoring with
arandom fraction of theinterval time. It can take up to two seconds before MonAMI will monitor the
root filesystem in the example above.

Once data is collected, you should see thefile/ t np/ monami - fi | esyst em Depending on your

loca

filesystem (and which version of MonAMI you are using) you should see output similar to the

following:

"root-fs.fragnment size" "1024" (B) [every 2s]

MonAMI by example

"root-fs. bl ocks. si ze" "1024" (B) [every 2s]
"root-fs.blocks.total" "264445" (blocks) [every 2s]
"root-fs. bl ocks. free" "142771" (bl ocks) [every 2s]
"root-fs. bl ocks. avail abl e" "129118" (bl ocks) [every 2s]
"root-fs.capacity.total" "258.24707" (M B) [every 2s]
"root-fs.capacity.free" "139.424805" (M B) [every 2s]
"root-fs.capacity. avail abl e" "126.091797" (M B) [every 2s]
"root-fs.capacity.used" "118.822266" (M B) [every 2s]
"root-fs.files.used" "68272" (files) [every 2s]
"root-fs.files.free" "56294" (files) [every 2s]
"root-fs.files.avail abl e" "56294" (files) [every 2s]
"root-fs.flag" "0" () [every 2s]

"root-fs. namemax" "255" () [every 2s]

Data and datatrees

Monitoring targets will often provide lots of information, often more than you actually want. To keep
thisinformation manageable, it is held in atree structure, just like a filesystem: files correspond to a
specific metric and directories (or folders) containing other directories and metrics.

The datatrees can be drawn as graphs. The example datatree, shown in the above snapshot output, is
shown in Figure 1. The ellipses represent branches and the rectangle represents metrics.

1024
B

264445
total
blocks
fragment | 1024
size B 142771
free
blocks
129118
available
blocks
258.24707
total -
MiB
139.424805
free
MiB
X 126.091797
available -
_______ MiB
l// Anonymous R
sample 1 118.822266
~—— - used
MiB
68272
used [—
files
56294
namemax | 255 free
files
. 56294
available [—
files

To refer to a specific metric, you specify a path within the datatree, ignoring the very first element
(shown as adashed dllipse) asit isredundant. Thisis similar to how afile has an absolute path within
afilesystem. Instead of using aslash (/ or\) to separate elements of ametric's path, adot is used. So
the metric in the lower right corner of thediagramisroot -fs. fil es. avai | abl e.

MonAMI by example

3. Selecting and merging available data

In this section, we look at how to select a subset of available information and merging different data-
trees together. This allows us to be selective in what information to present and also to monitor dif-
ferent aspects of the system concurrently.

Configuration file

Thefollowing configuration will measuretheavajIablefreespaf:e1 onthe/ (root) and/ hore filesys-
tem and store the latest valuesin afile/ t np/ monami - fi | esystem

Copy the configuration below asthe/ et ¢/ nonani . d/ exanpl e. conf file, replacing any exist-
ing file. Remember, don't try to copy the circled numbers!

#it
MNAM by Exanple, Section 3
#i#t

Qur root filesystem
[filesysteni

nane = root-fs

| ocation =/

Qur /hone filesystem
[filesystenl O

name = home-fs

| ocation = /hone

Record latest f/s stats every two seconds

[sanpl e]

read = O root-fsl.capacity.avail able, hone-fs.capacity.avail able
wite = snapshot

interval = 2

The current filesystemstatistics
[snapshot]
filename = /tnp/ monam -fil esystem

A few thingsto note:

O Theconfiguration createstwo monitoring targets, called r oot - f s and hornre- f s. Both usethe
filesystem plugin.

O Ther ead attribute is acomma-separated list of metrics or branches.

O Thefirst element of the metric's path is the target name.

Running the example

As with the previous example, you should make sure MonAMI isrunning for at least two seconds to
guarantee that the file/ t mp/ monanmi - f i | esyst emhas been created or updated. Depending on
your filesystems this file should contain something like the following:

"root-fs.capacity. avail abl e" "126.091797" (M B) [every 2s]
"hone-fs. capacity. avail abl e" "11178.921875" (M B) [every 2s]

! Theterm “available space” refersto the storage availableto anon-r oot user whereas “free space” isthe storage availableto ther oot user.
In general, the free space will be greater than the available space. More information is available in the MonAMI User Guide.

MonAMI by example

Combining different datatrees

sample sections can combine different datatrees together by specifying them as a comma-separated
list of sources. The simplest is to include all metrics from two sources, by simply specifying the two
target names:

read = root-fs, hone-fs

This will combine all data from the r oot - f s and hone- f s targets, resulting in / t np/ mona-
m -fil esyst emoutput like:

"root-fs.fragment size" "1024" (B) [every 2s]

"root-fs. bl ocks. si ze" "1024" (B) [every 2s]
"root-fs.blocks.total" "264445" (blocks) [every 2s]
"root-fs. bl ocks. free" "142771" (bl ocks) [every 2s]
"root-fs. bl ocks. avai | abl e" "129118" (bl ocks) [every 2s]
"root-fs.capacity.total" "258.24707" (M B) [every 2s]
"root-fs.capacity.free" "139.424805" (M B) [every 2s]
"root-fs.capacity. avail abl e" "126.091797" (M B) [every 2s]
"root-fs.capacity.used" "118.822266" (M B) [every 2s]
"root-fs.files.used" "68272" (files) [every 2s]
"root-fs.files.free" "56294" (files) [every 2s]
"root-fs.files.avail abl e" "56294" (files) [every 2s]
"root-fs.flag" "0" () [every 2s]

"root-fs. namemax" "255" () [every 2s]

"hone-fs. fragment size" "4096" (B) [every 2s]

"hone-fs. bl ocks. si ze" "4096" (B) [every 2s]

"hone-fs. bl ocks.total" "16490546" (bl ocks) [every 2s]
"hone-fs. bl ocks. free" "3699490" (bl ocks) [every 2s]
"hone-fs. bl ocks. avai | abl e" "2861802" (bl ocks) [every 2s]
"hone-fs.capacity.total " "64416. 195312" (M B) [every 2s]
"hone-fs.capacity.free" "14451.132812" (M B) [every 2s]
"hone-fs. capacity. avail abl e" "11178.914062" (M B) [every 2s]
"hone-fs. capacity. used" "49965.0625" (M B) [every 2s]
"honme-fs.files.used" "8388608" (files) [every 2s]
"hone-fs.files.free" "8008120" (files) [every 2s]
"honme-fs.files.avail abl e" "8008120" (files) [every 2s]
"honme-fs.flag" "0" () [every 2s]

"hone-fs. namemax" "255" () [every 2s]

The process of combining the two datatreesis shown graphically in Figure 2.

10

MonAMI by example

[e]

ez
pr——FeT) =

=] |
) o)
-

[]

) e L]
\

‘ =2
[wie |
DL

aataie

5]

o]

— o o]
— e [456

R = 5] /

o
HHHEEE

S
e]

e
G5

‘
1

-
{1]o] o]

[]
=]
st

Combining datatrees allows you to combine monitoring results from different targets. In the configu-
ration at the beginning of this section, we merge two datatrees (each datatree has only one metric), but
in general we can combine any number of datatrees, collecting data from any number of targets.

Selecting subsets of a datatree

In the above example, we select just one metric from within each target's datatree. From ther oot -

f s andhome- f s targets, we select only each target'scapaci t y. avai | abl e metric. Thiscan be
extended to select mulitple metrics from each datatree.

Selecting metrics

To select multiple metrics, simply list the metrics you want asacomma-separated list of datatree paths.
In the following example, two metrics have been selected.

read = root-fs. blocks.available, root-fs.files.available

11

MonAMI by example

139.424805
free

MiB
126 091797

The resulting datatree will include both the bl ocks. avai | abl e andfi | es. avai | abl e met-
rics.

Selecting branches

We can al so specify the path of abranch toinclude all metricswithin that branch. The following shows
an example selecting the bl ocks branch from the root-fs target.

read = root-fs. bl ocks

Thenew datatreewill includethemetricsr oot - f s. bl ocks. si ze,root-fs. bl ocks. tot al ,
root-fs.blocks.freeandroot-fs. bl ocks. avai |l abl e.

12

MonAMI by example

Vetoing metrics and branches

Sometimes it is easier to say what data you don't want to include. Specific metrics or branches can
be excluded by listing them prefixed with an exclamation mark. The following demonstrates how to
select all of the bl ocks metrics from the root-fs targe except for the bl ocks. si ze metric:

read = root-fs.blocks, !root-fs.blocks.free

139.424805
free

MiB

This is easier than listing all the metrics individually: root - fs. bl ocks. si ze, root -
fs.blocks.total androot-fs. bl ocks. avai |l abl e.

The final example shows selecting all metrics except for a metric and those beneath a branch.

read = root-fs, lroot-fs.blocks, !root-fs.flag

13

MonAMI by example

e 1222222]

By selecting metrics and branches, and by vetoing selected metrics or branches of metrics, arbitrary
selection of metricsis made easy.

14

MonAMI by example

4. Caching and named samples

In this example, we show caching and named samples. Caching allows you to make sure you never
overload a service from monitoring. Named samples allows logical grouping of related monitoring
from different targets.

Configuration file

Asbefore, copy the configuration file below asthefile/ et ¢/ monam d. d/ exanpl e. conf , over-
writing any existing file.

#H#
MONAM by Exanple, Section 4
#H#

Qur root filesystem
[fil esysteni
name = root-fs
location =/

cache = 2 O

Qur /home fil esystem
[fil esysteni
nane = hone-fs
| ocation = /hone
cache = 2s

Bring together information about the two partitions
[sanpl e]

nane = partitions 0

read = root-fs, home-fs

cache = 10

Update our snapshot every ten seconds
[sanpl e]

read = partitions O

write = snapshot

interval = 10

Once a minute, send data to a log file.
[sanpl €]
read = partitions.root-fs.capacity.available, \ O
partitions. home-fs.capacity. avail abl e
wite = filelog
interval = 1m O

A file containing current filesysteminfornation
[snapshot]
filename = /tnp/ monam -fs-current

A permanent log of a few inportant netrics
[filelog] O
filename = /tnp/ nonam -fs-Iog

Some points of interest;

O The cache attribute specifies a guaranteed minimum delay between successive requests for
information. Here, there will aways be at |east two seconds between consecutive requests.

The value is atime-period: one or more words that specify how long the period should be. This
is the same format as the sample interval attribute, so “5nf is five minutesand “1h 30nf is
an hour and a half.

O Likeall targets, this name must be unique.

15

MonAMI by example

This sample reads all available metrics from the par ti ti ons target. To gather thisinforma-

Sometimes attribute lines can get quite long. To make them easier to read and edit, long lines
can be broken down into multiple shorter lines provided the last character is a backslash (\).
Thisinterval isdeliberately short to allow quick gathering of information. For normal useamuch

0
tion, theparti ti ons target will read from the two filesystem targets.
0
0
longer interval would be more appropriate.
0

The filelog plugin creates afile, if it does not already exit, and appends a new line for each

datatree it receives. It is a simple method of archiving monitoring information.

Running MonAMI

With this example, you should leave MonAMI running for a few minutes. Whilst it is running, you
can check that datais being appended to the log file (/ t np/ monanmi - f s- 1 og) correctly using, for

example, the cat program.

Depending on which version of MonAMI you are using and the current state of your partitions, the

file/ t np/ monami - f s- curr ent should look like:

"partitions.root-fs.fragment size" "1024" (B) [every 10s]
"partitions.root-fs.blocks. size" "1024" (B) [every 10s]
"partitions.root-fs.blocks.total" "264445" (bl ocks) [every 10s]
"partitions.root-fs.blocks.free" "142771" (bl ocks) [every 10s]
"partitions.root-fs. bl ocks.avail abl e" "129118" (bl ocks) [every 10s]
"partitions.root-fs.capacity.total" "258.24707" (M B) [every 10s]
"partitions.root-fs.capacity.free" "139.424805" (M B) [every 10s]
"partitions.root-fs.capacity.available" "126.091797" (M B) [every 10s]
"partitions.root-fs.capacity.used" "118.822266" (M B) [every 10s]
"partitions.root-fs.files.used" "68272" (files) [every 10s]
"partitions.root-fs.files.free" "56294" (files) [every 10s]
"partitions.root-fs.files.available" "56294" (files) [every 10s]
"partitions.root-fs.flag" "0" () [every 10s]
"partitions.root-fs.namemax" "255" () [every 10s]

"partitions. honme-fs.fragnment size" "4096" (B) [every 10s]
"partitions. home-fs. bl ocks. size" "4096" (B) [every 10s]
"partitions. honme-fs.blocks.total" "16490546" (bl ocks) [every 10s]
"partitions. home-fs. bl ocks.free" "3699442" (bl ocks) [every 10s]
"partitions. home-fs. bl ocks. avail abl e" "2861754" (bl ocks) [every 10s]
"partitions.home-fs.capacity.total" "64416.195312" (M B) [every 10s]
"partitions. honme-fs.capacity.free" "14450. 945312" (M B) [every 10s]
"partitions.home-fs.capacity.avail able" "11178.726562" (M B) [every 10s]
"partitions. honme-fs.capacity.used" "49965. 25" (M B) [every 10s]
"partitions.home-fs.files.used" "8388608" (files) [every 10s]
"partitions.home-fs.files.free" "8008117" (files) [every 10s]
"partitions. home-fs.files.available" "8008117" (files) [every 10s]
"partitions. honme-fs.flag" "0" () [every 10s]

"partitions. home-fs.namemax" "255" () [every 10s]

Thefile/ t mp/ nonani - f s- | og should look like:

tine
home-fs. capacity. avail abl e

partitions.root-fs.capacity. avail able

2007-10-03 11:12:59
2007-10-03 11:13:59
2007-10-03 11:14:59
2007-10-03 11:15:59

126. 091797 11178. 707031
126. 091797 11178. 703125
126. 091797 11178. 703125
126. 091797 11178. 710938

Named sample targets

A named sample target is smply a sample target that has a nane attribute specified. In contrast, a
sample without any specified namne attribute is an anonymous sample. All the samples in previous

sections are anonymaous.

16

MonAMI by example

The main use for named samples is to alow grouping of monitoring data. Suppose you wanted to
monitor multiple attributes about a service; for example, count active TCP connections, watch the
application’s use of the database, and count number of daemons running. Y ou may, for ease of han-
dling, want to build a datatree containing the combined set of metrics. A named sample alows you
to do this.

Another aspect of named targetsisthat it allows other targets (such as anonymous samples) to request
monitoring data from the named sample. Named samples can be used, in effect, as ssmple monitoring
target (such asr oot - f s target above).

g What'sin a name?

In fact, anonymous sample sections do have a name: their name is assigned automatically when MonAMI starts.
However, you should never usethis name or need to know it. If you find you need to collect datafrom an anonymous
sample, simply give the target a name.

Note that, although not illustrated in the above example, named samples will honour thei nt er val
attribute. This allows them to provide periodic monitoring information (in common with anonymous
samples) whilst simultaneously allowing other targets to request information at other times.

Caching

Monitoring will alwaysincur some cost (computational, memory and sometimes storage and network
bandwidth usage). Sometimesthis cost is sufficiently high that we might want to rate-limit any queries
so, for example, a service is never monitored more than once every minute.

Within MonAMI, this is achieved with the cache attribute. Y ou can configure any target to cache
gathered metrics for a period. In the above example, metrics from theparti t i ons named sample
are cached for ten seconds. If one of the anonymous samples had the interval attribute set to less than
10 seconds, they would not trigger any gathering of fresh data. I nstead, they would receive the previous
(cached) result until the ten-second cache had expired.

% Default caching policy

By default MonAMI will cache all results for one second. Since MonAMI monitoring frequency (the interval at-
tribute) has agranularity of one second, this default cache will not be noticed when atarget obtains data. However,
if multiple targets request data from the same target at almost the same time (to within a second), the default cache
ensures all the requests receive data from a single datatree.

Note that the cache attribute works for sample targets, as demonstrated in the above example.
Caching targets with different cache-intervals allows a conservative level of caching for the bulk of
the monitoring activity whilst retaining the possibility of adding more frequent monitoring.

Some monitoring plugins will report a different set of metrics over time; this causes the structure of
the datatree changes due to the number of reported metrics varying. Most often this happens when the
service being monitored changes availability (when a service “goes down” or “comes up”), although
some services report additional metrics once they have stabilised. The Apache HTTP server is an
example; after aninitial delay, it provides a measure of bandwidth usage.

When a change in a datatree structure is detected, MonAMI will invalidate all itsinternal caches that
use this datatree; independent caches are left unaffected. Subsequent requeststo atarget for fresh data
will gather new data, either freshly cached or direct from the monitoring target. This allows the new
structure to propagate independent of the cache attributes.

17

MonAMI by example

5. On-demand monitoring

This example demonstrates on-demand monitoring. On-demand monitoring is where MonAMI will
not trigger gathering information internally. Instead, something outside of MonAMI requests infor-
mation. Only when metrics are requested will MonAMI acquire the data.

Another characteristic of on-demand monitoring is that one can present a large number of metrics.
After MonAMI has started, the user can choose which metricsthey areinterested in. Typically, theuser
can change their selection (the user decides to start monitoring some metric, or stop monitoring it) or
stop monitoring altogether. MonAMI will adjust accordingly; for example, if no users are requesting
on-demand monitoring information and no internally triggered monitoring is configured, MonAMI
will not gather any information. Using on-demand monitoring, one can make provision for monitoring
avast number of metrics that are normally uninteresting without burdening the monitored systems.

The example used in this section is KSysGuard. It is an excellent demonstration of the benefits of on-
demand monitoring: we do not specify in the MonAMI configuration which of the available metricsis
to be monitored. Rather, the user (through the K SysGuard GUI) chooseswhat to monitor. The user can
change their mind by adding or removing metrics. When the user closes the KSysGuard application,
no further monitoring is triggered.

KSysGuard is not unique in using on-demand monitoring: Nagios uses it for it's NRPE monitoring.
However, KSysGuard is both easy to use and easy to configure, making it ideal for demonstration
purposes.

Configuration file

Thefollowing examplewill include both internally triggered monitoring (asin the previous examples)
and on-demand monitoring. As before, alog file is maintained that records the current status of two
metrics. In addition, users are allowed to query any of the available metrics through the KSysGuard
interface. KSysGuard was chosen asit isreadily available and simpleto understand, but the on-demand
concept applies to some other monitoring systems.

Asbefore, copy the following configuration fileas/ et ¢/ nonami . d/ exanpl e. conf .

#it
NMONAM by Exanple, Section 5
#it

Qur root filesystem
[fil esysteni
name = root-fs
location =/

cache =2 0O

Qur /home fil esystem
[fil esysteni
name = hone-fs
| ocation = /hone
cache = 2

Bring together all information we want KSysQuard to see
[sample] O

name = ksysguard-sanpl e

read = root-fs, home-fs

cache = 10 O

Also record the root and /home avail abl e space
[sanpl e]
read = root-fs.capacity.available, \
home-fs. capacity. avail abl e
wite = root-fs-Ilog
interval = 1m

18

MonAMI by example

[filelog]
name = root-fs-1og
filenane = /tnp/ monam -root-fs-1og

Al ow KSysCGuard to request infornation
[ksysguard]
read = ksysguard-sanple O

Some points to note:

O

O

O

O

Each of the filesystem targets has a two second cache. This is to catch when periodic and on-
demand monitoring requests happen to coincide.

The named sample aggregates information for the ksysguard target. We don't specify interval or
write attributes as monitoring will be “on demand”: ksysguard target will request information
as KSysGuard requiresit.

The ten-second cacheisincluded for safety: it prevents a K SysGuard user from overloading the
services.

Ther ead attribute declares from which target the datatree presented to KSysGuard is obtained.

Running the example with telnet

This section isincluded for those who do not have the KSysGuard GUI installed or for those who want
to see some of the gory detail! If you have access to K SysGuard and don't want to type in commands
in a command-line environment, feel free to move onto the next section.

To emphasise the point: people do not normally use the telnet client program for monitoring; we useit
here but the program isincluded on almost every Unix-like platform. Y ou are not expected to use this
routinely. It is here to illustrate the idea of on-demand monitoring in environments that do not have
K SysGuard installed. This hands-on approach also demonstrates that you (the user) are in control of
the monitoring schedule, not MonAMI.

Start MonAMI in the usual non-detaching verbosemode: / usr / bi n/ nonam d - f v. After starting
MonAMI, andin aseparateterminal, typet el net | ocal host 3112. Thisstartsthetelnet client
s0 it connects to the MonAMI running on the local machine. Y ou will see something like:

paul @onachai n: ~$ tel net |ocal host 3112
Trying 127.0.0.1..

Connected to | ocal host.

Escape character is '~]'

MonAM 0.9

-- Welcone to the ksysguard plugin for MONAM --

This aims to be conpatible with ksysguard's own ksysguardd daenon
and provide information for ksysguard to display.

ksysguar dd>

The text ksysguar dd> is a prompt, indicating you can enter a command. To start with, type the
command MONI TORS, which lists all available metrics. You will see alist of metrics, followed by
the prompt.

ksysguar dd> MONI TORS
root-fs/fragnent size i nt eger
root-fs/ bl ocks/size i nt eger
root-fs/capacity/free float
More metrics are reported.

home-fs/fil es/avail abl e integer

home-fs/fl ag i nt eger
home- f s/ nanemax i nt eger
ksysguar dd>

19

MonAMI by example

% Different separator character

Aswith MonAMI, KSysGuard groups metrics within atree structure. However, K SysGuard expects path elements
to be seperated using the forward slash (/). The ksysguard plugin presents the data correctly for the KSysGuard
GUI, so the metrics have a different separator character.

To obtain the metadata about ametric, type in the metric's full name immediately followed by a ques-
tion mark. This will return a single line, containing the metric name, the minimum and maximum
values for that metric (both zero if they are unknown) followed by the units. For example:

ksysguar dd> hone-fs/capacity/total ?
honme-fs/capacity/total O 0 M B
ksysguar dd>

To obtain ametric's current value, type in the metric's full name. Y ou can repeat this as often as you
like; if correctly configured, MonAMI's caching policy will prevent queries from impacting heavily
on any monitored system.

ksysguar dd> hone-f s/ capacity/ avail abl e
11177. 742188

ksysguardd> root-fs/capacity/avail abl e
126. 091797

ksysguar dd>

To terminate the connection, either close the telnet connection (Ctrl+] then type cl ose and Enter),
or instruct the MonAMI ksysguard plugin to disconnect (Ctrl+D).

Y ou can run multiple connections concurrently, requesting the same or different metrics simultane-
oudly.

Running the example with KSysGuard

Start MonAM I aspreviously (monani d - f v). Whilst MonAMI isrunning, it will listen on port 3112
for incoming connections. Thisis the default port to which KSysGuard will attempt to connect.

With MonAMI running, start the KSysGuard GUI: ksysguard. From the menu bar, select File —
Connect host... Theresulting dialogue box will request information about how to connect to MonAMI.
Enter the name of the host MonAMI is running on in Host and ensure that, under Connection Type,
Daemon is selected and that Port isset to 3112.

| & System Load - KDE Systerm Guard = BEB
Fle Edt Settings Help

| Sensor Browser Sensor Type System Load | Process Table

localhost

PU Load oad Average (1 min)

8 connect Host - KDE System Guard

Host: [
Connection Typ
Cssh Orsh ® Daemon) custom command
Command: -
M
e.g. ssh -l root remote.host org ksysguardd s SHLa)
O s

142 Processes Mermory: 984,920 KB used, 41,840 KB free Swap: 4 KB used, 2,650,680 KB free

Figure 1. KSysGuard about to connect to MonAMI.

20

MonAMI by example

% K SysGuard and host names

The GUI will not accept | ocal host asthe host name for MonAMI. This is because the GUI starts its own da-
ta-gathering daemon, ksysguardd, automatically. It considers| ocal host aways to refer to this data-gathering
daemon. To connect to MonAMI, use either machine's node name (rununane - n) if thisisdifferenttol ocal -
host , or its fully-qualified domain name.

Clicking on the Ok button should result in the host name appearing in the left Sensor Browser pane.
If this doesn't work, check that MonAMI is running, that you entered the host name correctly and
there is no firewall blocking connections. If connecting to MonAMI remotely, you must authorise
the remote connection using the al | ow attribute (see the MonAMI User Guide or monami.conf(5)
manual page for further details).

Once the hostname appears on the sensor browser, click on the + symbol (next to the hostname) to see
the available sensors. If MonAMI is reporting many metrics, expanding the tree of available metrics
can be aslow process: be patient.

To begin monitoring, drag and drop a metric to a display area. It is often easiest to create a hew

worksheet. Select File - New worksheet... to generate a new worksheet in which you can drag-and-
drop sensors.

= Filesystems [modified] - KDE System Guard. BEB

File Edit Settings Help

Sensor Browser | sensor Type System Load | Process Table | Filesystems
© ¥ donachain
2 home-fs
blocks
© capacity
[Foating Point alue
[MaFree Memory Floating Paint Value
MsTotal Accesses Floating Point Value
MaUsed Memory Floating Paint Value
@ files
Maflag Integer Value
Mafragment size Integer Value
Manamemax Integer Value
© root-fs
blocks
© capacity
Msavaiable Floating Point Value
[aFree Memory Floating Peint Value
{MsTotal Accesses Floating Point Value
MaUsed Memory Floating Paint Value
@ files
Maflag Integer Value
Mafragment size Integer Value
Manamemax Integer Value
localhost

Jhome available sp: J available sp

Jhome avallable space [MiB] J available space [MiB]

142 Processes Memory: 991,784 KB used, 34,976 KB free Swap: 4 KB used, 2,650,680 KB free

Figure 2. KSysGuard monitoring available capacity.

g Wrong metric names

You may notice that some of the metrics are inappropriately labelled. For example, metrics that have a path that
endswith “free” are displayed as“ Free Memory”, those ending with “total” are displayed as“Total Accesses’ and
“used” as“Used Memory”. Thisisabug in the current version of KSysGuard.

Mixed monitoring

The above configuration has MonAMI undertake interally triggered (or periodic) monitoring whilst
allowing on-demand monitoring. MonAMI will record datato the r oot - f s- | og reporting target
every minute.

Thisfile-logging of dataisindependent of and concurrent to any KSysGuard monitoring, except that
MonAMI will honour the cache settings. Each of the two filesystem monitoring targets will cache
results for two seconds, irrespective of whether the request came from K SysGuard or from the anony-
mous sample section.

21

MonAMI by example

6. Plotting data with Ganglia

This section describes interfacing MonAMI with Ganglia. To try the configuration within this section
you will need to have Ganglia available. Setting up Gangliais easy, but is outside the remit of this
tutorial. Further details, including Gangliatutorials and binary packages, are available from the Gan-
glia project site [http://ganglia.sourceforge.net/].

This section will start with simple filesystem monitoring and build into a demonstration of full mon-
itoring of Torque and Maui monitoring. This example can be adapted to monitor other systems that
MonAMI supports, such as DPM, MySQL, Tomcat...

Configuration file
As before, copy the following configuration fileas/ et ¢/ nonami . d/ exanpl e. conf .

#i#t
MNAM by Exanple, Section 6
#i#t

Qur root filesystem
[filesysteni

name = root-fs

| ocation =/

cache = 2 O

Qur /home filesystem
[filesysteni

name = home-fs

| ocation = /hone
cache =2 0O

Once a minute, record / and /hone avail abl e space.
[sanpl e]
read = root-fs.capacity.available, \
home-fs. capacity. avail abl e
wite = ganglia
interval = 1m 0O

Ganglia target that accepts data
[gangli a]
O

Some points to note:

O The cache attributes enforce a “never more than” policy: never more than once every two
seconds.

O MonAMI controlshow often datain Gangliaisupdated: updating dataonce aminuteisacommon
choice.

0 Theganglia plugin will attempt to read from the gnond. conf file. The plugin will search for
thisfilein acouple of standard places. If found, the plugin will know how to send metric-update
messages without any attributes.

Running the example

It is recommended (although not essential) that the Ganglia monitoring daemon gnond is running
on the machine. The gnmond daemon monitors many low-level facilities and also provides a common
place for Ganglia configuration: the file gnond. conf . If the gnond. conf isnot in a standard
location, you can specify where to find it using the config attribute. If gnond isn't installed, you can
specify how to send Ganglia metric update messages using other attributes within the ganglia target.
Refer to the MonAMI User Guide or the monami.conf(5) manual page for further details.

22

http://ganglia.sourceforge.net/
http://ganglia.sourceforge.net/
http://ganglia.sourceforge.net/

MonAMI by example

When run, MonAMI will emit the corresponding UDP nul ti cast packets containing the metric
information. Thevariousgnond daemonsthat arelistening will pick up the metricsand, when queries
by the grret ad daemon, will present the latest information.

Thegnet ad daemonwill poll gnond daemons periodically. By default thisis 15 seconds, although it
can bealtered throughthegnet ad. conf configuration file. This meansthat the new metricsdefined
in the above exampl e, under the default Ganglia configuration, may take up to 75 secondsto bevisible
in the web front-end.

Sample results

To view the results, look at the Ganglia page (the Host-specific view) for server that is running
MonAMI. You should see two additional graphs towards the bottom of the page entitled “r oot -
fs.capacity. avail abl e” and“home-fs. capaci ty. avai | abl e”. Hereisan example:

home-fs.capacity.available root-fs.capacity.available

120k 34k
2 10k =
=

100 k

90k 30k
15:00 15:20 15:40 15:00 15:20 1540

@ svr017.gla.scotgrid.ac.uk last hour (now 96,918) @ svr017.glascotgrid.ac.uk last hour (now 3,361)

Figure 3. Ganglia generic single-metric graphs
Gangliaalso providesalist of extrametrics on the Gmetrics web-page. This page has alinked to from

the Host view: follow the “Gmetrics’ link on the left side. On the Gmetrics page, you should see two
entries underneath the “ User Defined Metrics (gmetrics)” title.

Grid Servers > svr017.gla.scotgrid.ac.uk

Back to Host View
¥ This host is up and running.

User Defined Metrics (gmetrics)

[Tn] ™max | omax | NAME I VALUE
21 60 191 root-fs.capacity.available 3360.546875 MiB
21 60 191 home-fs.capacity.available 108578.539062 MiB

Figure 4. Example Gmetric page.

Each metric reported to Ganglia is named after its path within the datatree. MonAMI keeps track of
the units for each metric. Thisinformation is passed on to Ganglia, allowing it to display the current
value with the appropriate units.

Dealing with old data

Thefigure above shows atable where thefirst three columnsare TN, TMAX and DIVAX. The TNvalueis
the number of seconds since the metric was last updated. If the webpage is reloaded, TN will increase
until anew metric valueis received by Ganglia

TMAX indicates the freshness of ametric. If TN exceeds TMAX, then Gangliais expecting anew value.
However, TMAX is only advisory: Gangliatakes no action when TN exceeds TMAX.

g Delaysin getting new data

Sometimes TN will exceed TMAX. Bear in mind that the PHP web-page queries gnet ad to obtain information.
In turn, grmret ad will poll one or more gnond instances periodically (by default, every 15 seconds). This may
introduce a delay between new metric values being sent and becoming visible within the web-pages.

23

MonAMI by example

DMAX indicates for how long an old metric should be retained. If TN exceeds DMAX then Ganglia
will consider that that metric is no longer being monitored. Therefore, it will discard information
about that metric. Historic data (the RRD files from which the graphs are drawn) will be kept, but
the corresponding graphs will no longer be displayed. If fresh metric values become available, then
Gangliawill start redisplaying the metric's graphs and the historic data may contain a gap.

Choosing a value for DMAX is a compromise. Too short an interval risks metrics being dropped acci-
dentally if a data-source takes an unusually long time to provide information, whilst too long an in-
terval resultsin unnecessary delay between ametric no longer being monitored and Gangliadropping
that metric.

Automatic dropping of old metrics can be disabled by setting DMAX to zero. If this is done, then
there is no risk of Ganglia mistakenly dropping a metric. However, if a metric receives no further
updates, Gangliawill continue to plot the last value indefinitely (or until gnond gnet ad daemons
are restarted, in that order). Unless the daemons are restarted, false data will be displayed, providing
apotential source of confusion.

z Calculating DMAX

MonAMI will calculate an estimate for DMAX based on observed behaviour of the monitoring targets. A fresh
estimate is calculated for each metric update. If the monitoring environment changes, MonAMI will adjust the
corresponding metrics DMAX value, allowing Ganglia to adapt to changes in the underlying monitoring system's
behaviour.

Preventing metric-update loss

An issue with providing monitoring information for Ganglia is how to deal with large numbers of
metrics. MonAMI can provide very detailed information, resulting in alarge number of metrics. This
can be a problem for Ganglia.

The current Ganglia architecture requires each metric update be sent as an individual metric-update
message. On a moderate-to-heavily loaded machine, there is a chance that gnrond may not be sched-
uled to run as the messages arrive. If this happens, the incoming messages will be placed within the
network buffer. Once the buffer is full, any subsequent metric-update messages will be lost. This
placesalimit on how may metric update messages can be sent in one go. For 2.4-series Linux kernels
the limit is around 220 metric-update messages; for 2.6-series kernels, the limit is around 400.

g Trying not to cause problems.

The ganglia plugin tries to minimise therisk by sending metric-update messagesin bursts of 200 metric updates (so
less than the 220 metric-update limit on 2.4-series kernels) with a short pause between successive bursts. The time
between bursts gives the gnond daemons time to react. There are attributes that fine-tune this behaviour, which
the User Guide discusses.

Onesimplesolutionisto split the set of metricsinto subsets. If these subsets are updated independently
and none have sufficent metrics to overflow the network buffer, then there will be no metric-update
message | oss. If more than one system isto be monitored, this splitting iseasily and naturally achieved.

The following example shows a configuration for monitoring a local Torque and Maui installation.
The configuration demonstrates how two sample stanzas can i sol ate the monitoring work. This spreads
the monitoring load and reduces the impact on Ganglia.

it

MONAM by Exanple, Section 6.
##t Torque and Maui nonitoring
it

[torque]

cache = 60 0O

[maui]
user = root [0
cache = 60 O

24

MonAMI by example

[sanple] O
read = torque.Jobs, torque. Queues. Execution
wite = ganglia

interval = 1m
[sample] O
read = maui, !nmaui. Fairshare. User
wite = ganglia
interval = 1m
[gangli a]
O
Some points:

Make sure we never query the Torque or Maui services more than once aminute.

O Theuser attribute specifies as which user the MonAMI maui plugin should claim to be running;
thevaluer oot iscommonly authorised. It is possible to configure Maui to accept a non-r oot
user, although this brings no additional security. For more details, see the MonAMI User Guide.

O The Torque and Maui monitoring are done independently.

O Weassumethat Gangliagnond isinstalled. If thisis so, the MonAMI ganglia plugin will parse

the gnond file for information on how to send metric-update messages.

O

The following shows the gmetric page, showing a subset of the available metrics:

Grid Servers > svr016.gla.scotgrid.ac.uk

g } ’ ‘ Back to Host View
This host Is up and running.

User Defined Metrics (gmetrics)
Y
192 torque.Queues.Execution.ByGroup.Local Jobs.State.exiting 0 Jobs
18 B0 192 maul.Falrshare Group.zeussgm.observed 0.0 %
18 6O 192 torgue.Queues.Execution ByGroup.Grid_OPS Jobs.State transiting O Jobs
18 B0 192 torque.Queues.Execution.ByQueue.biomed. Jobs Efficiency 0-20 9 Jobs
18 6O 192 torque.Queues.Execution.ByQueue.glbio.Jobs Efficiency.80-100 0 Jobs

18 B0 192 torque.Queues.Execution.ByQueue.glbio.Jobs Efficiency.40-60 0 Jobs
18 6O 192 maui.Fairshare Class.pheno.cbserved 21.04 %
19 B0 192 torque.Queues.Execution.ByQueue.glbio.Jobs . State.transiting 0 Jobs
18 6O 192 torque.Queues.Execution.ByQueue.cdf.Jobs State.queued 0 Jobs

18 B0 192 torgue.Queues.Execution ByGroup.Grid_OPS Jobs Efficiency.40-60 0 Jobs
18 6O 192 torque.Queues.Execution.ByQueue totalep.Jobs Efficiency. 20-40 0 Jobs

18 A0 192 torgue.Queues.Execution. ByGroup.Grid.Jobs.State transiting 0 Jobs
18 6O 192 torque.Queues.Execution.ByGroup.Grid.Jobs Efficiency.40-60 2 Jobs
18 BO 152 torque.jobs.total 464 Jobs
18 60 192 maul.Falrshare Group.sixt.Target.type Target
18 BO 152 maui.Fairshare Group.totalep.Target type Target

Figure 5. Ganglia gmetric page showing some metricsfor Torque and Maui.

Producing complex graphs

MonAMI can produce alarge number of metrics. The standard Ganglia web front-end shows asingle
graph (torwards the bottom of page) for each metric. Although these single-metric graphs are func-
tional, they help little towards understanding the “ bigger picture” if there are alarge number of metrics
being recorded.

Ganglia's web front-end contains a number of graphs that aggregate metrics provided by the gnond
daemon. One such graph shows the number of runnable processes, the 1-minute load average and
the number of CPUs. Another shows the total in-core memory of the machine, split by usage. These

25

MonAMI by example

graphs provide a good overview of the computer's current behaviour and greatly assist in diagnosing
problems as they arise.

Unfortunately, these default aggregation graphs are hard-coded into the PHP. There is currently no
standard way to extend the Ganglia web front-end to include custom graphs. Thereis also no method
to specify that certain graphs should be displayed for only one particular machine: the one that is
running MonAM I collecting the interesting metrics.

g The“external” package

MonAMI provides monitoring information for any number of monitoring systems. Strictly speaking, itsjob isdone
once data is within those systems. However, to get the most out of any particular system, you may need to tweak
the monitoring system, or expand some scripts to better match the breadth of data MonAMI provides.

The external package contains a number of application-specific instructions, sample configuration files and mod-
ules. It is both areference point for using MonAMI with particular monitoring systems and a platform with which
to explore what is possible.

The section of the “external” package for Gangliaincludes a PHP framework called multiple-graphs.
This includes support for frames (in which multiple graphs and tables can be included) and pop-ups
(allowing the display of context-specific information). The package also includes support for host-

specific graphs.

The following figure shows the multiple-graphs framework in action: some of the Torque monitoring
datais shown as graphs and pie-charts.

Torque

Summary information

ALl jobs by state ALl jobs by state
B running (100,008

Jobs

0.0

Thu 11 Sat 13 Mon 15

O completed [exiting Mheld [Oqueued ME running
O suspended @ transit O transiting Owaiting

~ M 7 [Add to Google

Running jobs by efficiency Running jobs by efficliency

M-z ¢9.748)

B zo-q0 (1308
W 40-60 c1.08%)
Oeo-zo 1088
B ao-100 ¢86.80%)

Jobs

Thu 11 Sat 13 Mon 15
M less than 20% H 20% to 40% W 40% to GO0%
O 60% to 80% @ greater than BO%

~ M 4 B3 Add to Co Slc

by queue... by group...

per-Queue information

Running jobs by queue Running jobs by gueue

ng B atlas (8.375)
= . binmer ©d_FPEY

Figure 6. Some Torque graphsfrom the Host-view page.

The data is provided by MonAMI running with a configuration similar to the above example. The
graphs and pie-charts are generated using the multiple-graphs library. The exact PHP configuration
for generating the Torque and Maui frame is also available within the “externals’ package as one of
the examples. These are documented and include installation instructions.

26

MonAMI by example

7. Using Nagios to trigger alerts

Nagios is a sophisticated monitoring system. One of its major strengthsisits ability to monitor many
services and provide a configurable response to services going into War ni ng or Cri ti cal states.
More information is available at the Nagios project home page [http://www.nagios.org/].

This section will show how to configure MonAMI and Nagios to alert if something iswrong. To get
the most out of this section, you will need Nagios configured on your computer or computers. Nagios
requires little configuration for a basic setup: the default configuration should be sufficient.

Currently, MonAMI offers only passive monitoring. Thisiswhere MonAMI sends updates to Nagios
indicating the current state of the monitored services. Passive monitoring requires some extra config-
uration. The section Section 7, “ Setting up Nagios’ gives an overview of this.

Configuration file
As before, copy the following configuration file as/ et ¢/ nonami . d/ exanpl e. conf .

it
NMONAM by Exanple, Section 7
it

Qur root filesystem
[fil esysteni

nane = root-fs

| ocation =/

cache = 2

Qur /home fil esystem
[fil esysteni
nane = hone-fs
| ocation = /hone
cache = 2

Once a minute, record / and /hone avail abl e space
[sanpl e]

read = root-fs, home-fs

wite = nagi os

interval = 1m O

Nagi os target that sends alert data

[nagi os]
host = nagi os-svr. exanpl e. orgJ
port = 5668

password = Not Secr et Enough

serviceld = rfsO : ROOT_FI LESYSTEM]

checkO = rfsO : root-fs.capacity.availablel, 100, 0.50
check = rfs : root-fs.files.avail abl e, 400, 100

service = hfs : HOVE_FI LESYSTEM
check hfs : home-fs.capacity.available, 10, 0.5
check hfs : hone-fs.files.avail able, 400, 100

Some points to note:

O Once aminute, this sample target will query the current status of the filesystems and send the
new datato the nagios target.

O Thisisthehost that hasthe nsca daemon. nagi os- svr. exanpl e. or g isan example FQDN
and should be replaced with the hostname of your Nagios server.

O Each nagios target should have at least one ser vi ce attribute. A service is what is reported
back to Nagios as being OK, War ni ng, or Cri ti cal (or, if misconfigured, as Unknown).
Without at least one service, a nagios target has nothing to do!

27

http://www.nagios.org/
http://www.nagios.org/

MonAMI by example

0 ashort name used within the MonAMI configuration for this service.

O thename of the service according to Nagios. By convention, thisisin capital letters.

0 Eachservice should have at least one check attribute associated with it. The checks determine
the current status of a service.

O Thenameof ametric. Thisisthe path within the supplied datatree.

O Thefirst valuethat will result in the service going into Wr ni ng state.

O Thefirst valuethat will result in the servicegoing into Cri ti cal state.

A serviceis something that Nagios will monitor on a specific server. In general, services are abstract,
(usually high-level) activity or resources that the server provides. Examples of services include a
MySQL DBMS, Torgue resource manager and filesystem space.

Nagios considers each service as being in one of four possible states:
XK the service is behaving normally.

Warni ng normal behaviour continues but there is an early indicator of aproblem. If thereis any
impact on available service, it is dight.

Critical norma behaviour is no longer possible. If any service is still available it is heavily
impacted and complete failure is expected soon.

Unknown Nagios does not know the status of this service.
Setting up Nagios

In order for aNagios host to accept status update messages from MonAMI, it must either run the nsca
daemon (nscad) or configure an inetd-like daemon (e.g., inetd or xinetd) to accept these connections
and run thenscad program indirectly.

The nsca daemon, whether running independently or viaan inetd-like daemon, will receive the update
notice and write a command to the Nagios “ external commands’ socket. For this to work, the socket
must be created by the Nagios daemon and the nsca daemon must have write accessto this socket. The
former is controlled by a configuration option (check _ext er nal _commands usually found in
nagi os. cf g) whilst thelatter requires the directory in which the socket is created (as defined in the
conmand_fi | e option and typically / var / | og/ nagi os/ r w/) to have the correct permissions.

Each MonAMI check must have a corresponding entry in the Nagios configuration. The following
creates a generic template for use with MonAMI passive updates.

define service {

nanme nonani - servi ce
use generic-service
active_checks_enabl ed 0

passi ve_checks_enabl ed 1

regi ster 0

check_command check_nonam _dunmy
notification_interval 240
notification_period 24x7
notification_options c,r

check_peri od 24x7

cont act _groups nonani - adni ns
max_check_attenpts 3

normal _check_i nterval 5

retry_check_i nterval 1

Despite the service being purely passive, avalid check _command setting is still needed. We usethe
command check_monam _dumy, which is asimple command that always returns True:

define command {

28

MonAMI by example

conmmand_nane check_rnonani _dumy
command_l i ne [bin/true

}

Thefinal step isdefinetheindividual servicesthat are to be monitored. The following Nagios config-
uration defines the two filesystem services defined above.

define service {

use nonami - service
host _nane svr017
servi ce_description ROOT_FI LESYSTEM
}
define service {
use nonami - servi ce
host _nane svr017
servi ce_description HOVE_FI LESYSTEM

/g Sayingwho you are

By default, nagios targets will use the local machine's fully-qualified domain name (FQDN) as the hostname.
However, Nagios alows the configuration to specify the shorter hostname. In the above example, the hostname
(svr017) isused instead of the longer FQDN (svr 017. gl a. scot gri d. ac. uk).

Thelocalhost attribute allowsyou to configure what the MonAMI nagiostarget specifiesasitsidentity. To correctly
identify itself, the target would need | ocal host = svr 017 within its nagios stanza.

Adjust your Nagios configuration to include the new template and checks and restart your Nagios
service. Nagios is careful about checking the configuration before starting: if you have a mistake in
your configuration file you must correct it before Nagios will start.

If the new services have been correctly configured you will see two new entriesin Nagios “Service
Detail” web-page for the host. These will have the PASV symbol indicating that passive updates are
accepted for this service, allowing MonAMI to send fresh data.

The two services describe above will be in aninitial (or Pendi ng) state when Nagios starts. They
will remain in that state until MonAMI first sends data. The following figure shows these services.

m HOME_FILESYSTEM I_,L PENDING MiA O0dOhOm 125+ 113 Service isnotscheduled to be checked...
NTP QK 10-17-2007 12:09:04 145d 2hSm 135 1/4 NTP OkK: Offset 0.0002319812775 secs
ROOT_FILESYSTEM 1_{ PENDING MiA O0dOhOm 125+ 113 Service is notscheduled to be checked...
cfservd 0K 10-17-2007 12:10:36 148d 0Oh 16m 135 /4 TCP OK-0.001 second response time on port 5308
sshd 0K 10-17-2007 12:11:27 148d 0h 14m 335 1/4 S5H OK - OpenSSH_3.6.1p2 (protocal 2.0)

Figure 7. Example of passively monitored services before MonAMI has sent
data.

Writing checks

Within MonAMI, each service has one or more checks associated with it. The checks are simple tests;
they determine the status of their corresponding service. For example, the filesystem service might
have checks for available capacity and available inodes for the different partitions, the torque service
might have checks that the torque daemon is contactable, that there aren't too many queued jobs, that
there aren't jobs stuck in wait state and so on.

Numerical checks are written as a metric and two numbers separated by commas. The first number
is when the check should go into Wr ni ng state; the second is when it should go into Cri ti cal

state. The gradient of these numbers indicates which direction is “ getting worse”. If the first number
is greater than the second then the metric is measuring resource exhaustion (e.g., available disk space,
free memory, time spent idle); wheress, if the second number is larger than the first then the metric is

29

MonAMI by example

measuring resource usage (e.g., number of concurrent processes, number of jobs, number of network
connections).

The following service and check attributes monitor available capacity for non-r oot users.

service = hfs : HOVE_FI LESYSTEM
check = hfs hone-fs. capacity. avail able, 10, 0.5

Consider a scenario where a user is downloading data, filling the / horre partition. If the avail-
able capacity (i.e., hone-fs. capaci ty. avai |l abl e) is 20 MiB, then HOVE_FI LESYSTEM
is in state OK. If, when next measured, the available capacity has dropped to 10.01 MiB
then HOVE_FI LESYSTEM is dtill OK. Once the measured value has dropped to 10 MiB,
HOVE_FI LESYSTEMwill bein War ni ng state. As the parition becomes further filled, it will stay
in Var ni ng state until, finally, the value drops to 0.5 MiB. At this point HOVE_FI LESYSTEMis
inCritical sate.

If there are multiple check attributes for a service attribute, the service's state is a combination of the
different check states. The rule is simple: the most important state wins. The states, in the order of
increasing importance, are: OK, Unknown, Warni ng and Cri ti cal . So, if al a service's checks
are CK, then the service is OK. If most of the checks are OK but some are Unknown, then the service
isin Unknown state. If there are some checksthat are in War ni ng state but noneyetinCri ti cal
state, then the service isin Vr ni ng state; but, if at least one check isCri ti cal , then the service
isinCritical state.

In the following example:

service = hfs : HOVE_FI LESYSTEM
check hfs : honme-fs.capacity.available, 10, 0.5
check hfs : hone-fs.files.avail able, 400, 100

If the available space drops to 10 MiB or the available files (the available inodes) drops to
400, then HOVE_FI LESYSTEM is War ni ng. If the available files drop to 100 or fewer, then
HOVE_FI LESYSTEMbecomesCri ti cal , independent of the available space.

Running the example

As before, run MonAMI with the supplied configuration. Make sure you run MonAMI for at least
one minute. There may be a dight further delay between the NSCA daemon writing the command to
Nagios socket and Nagios updating itsinternal state.

Once MonAMI has written data to Nagios, you will see the services state change from Pendi ng to
one of the four normal states of a service. In the example below, both services are in state OK.

MonAMI: home-fs.capacity.available = 108578.532062 MiB.

w17 HOME_FILESYSTEM L.L oK 10-17-2007 12:34:49 0d Oh Om 1895 13 hame-fs files. available = 15750807 files
NTP oK 10-17-2007 12:30:07 145d 2h 26m 36s 1/4 NTP OK: Offset0.001208060054 secs
FAEY : MonAMI: root-fs.capacity.available = 3362.50375 MiB,
ROOT_FILESYSTEM }_.L oK 10-17-2007 12:34:40 0d Oh Om 19s 13 roobfs files.available = BEIE4E files
cfsenvd oK 10-17-2007 12:31:47 149d Oh 37m 365 1/4 TCP OK-0.000 second response time on port 5308
sshd oK 10-17-2007 12:33:27 149d Oh 35m 565 1/4 SS5H OK- OpenSSH_3.8.1p2 (protocol 2.0)

Figure8. Example of passively monitored servicesafter MonAMI has sent data.

30

MonAMI by example

8. Writing data into MySQL

Sometimesit is desirable to store monitoring datain a permanent and flexible form. This might be for
generating reportsin an automated fashion, for conducting ad-hoc trend analysis or just to see whether
your site's current behaviour compares with something similar seen several months ago.

Ganglia, which uses RRDTool for data storage, allows the user to adjust the time-frame, permitting
a historic view. However, the reference point is always the current time. One cannot generate a “last
day” set of graphsfor a period three months ago. Within the RRDTool file, aging data looses fidelity.
Thisisauseful feature of RRDTool data storage, but it means that a graph showing a 24-hour period
six months ago is necessarily less accurate.

To archive monitoring data without compromise an alternative storage mechanism is needed. One
such solution is to store the data within a database and MySQL is a popular choice of database.

This section demonstrates how to configure MonAMI so it stores data within aMySQL database.

Configuration file
As before, copy the following configuration fileas/ et ¢/ nonami . d/ exanpl e. conf .

#i#t
MNAM by Exanple, Section 8
#it

Qur root filesystem
[filesysteni

name = root-fs
location =/

cache = 2

Qur /hone filesystem
[filesysteni
name = hone-fs
| ocation = /hone
cache = 2

Once a minute, record / and /hone stats into MySQL dat abase.
[sanpl e]

read = root-fs, home-fs

wite = nysql

interval = 1m

Store data in MySQL dat abase
[nysql]
dat abased = nonitoring
user = nonam -writer
password = sonet hi ngSecr et
tabl ed filesystem
fieldO root-avail abl el : root-fs.capacity.avail abl e
field = honme-avail able : hone-fs.capacity. avail able

Some points to note:

0 Thedat abase attribute must be specified when writing to a MySQL database and the corre-
sponding database must aready exist within MySQL.

Y ou must specify at abl e attribute but the table doesn't have to exist.

Thef i el d attributes define which metrics are written to the columns.

The name of atable column within the MySQL table.

The path to ametric within supplied datatrees.

o |

31

MonAMI by example

Setting up MySQL

Before running MonAMI, you must create the MySQL user nonani - wr i t er and create the mon-
itoring database. If the user or database you intend to use already exist, then you can just reuse the
existing ones. If you are using a user that already exists, make sure it has sufficient privilegesto store
the data.

The following SQL will create the monitoring database, create the monani - wri t er user and au-
thorise this user to create tables within the database and to append data to those tables.

CREATE USER ' nonami -writer' |DENTIFIED BY ' sonet hi ngSecret';
CREATE DATABASE noni t ori ng;
GRANT CREATE, | NSERT ON nonitoring.* TO 'nonam -witer';

Before appending new data, the MonAMI mysgl plugin will check the table exists. If it doesn't the
plugin will try to create the table.

The created table will be base on the datatree the mysgl target receives: each f i el d attribute will
have a corresponding column in the created table and the storage type will be based on the metric. If a
field attribute's metric is missing from the first datatree then MonAMI will create a STRING column
for that metric.

You can create the table manually; the procedure is described in the MonAMI User Manual. If the
table is created manually, then the MonAMI writer account can be granted less privileges; however,
the increase in security is limited and manually creating the tables is a hassle, so it is easier to let
MonAMI create the tables.

Running the example

Run MonAMI intheusual fashion (/ usr/ bi n/ nonani d - f v) for at |east one minute. During that
minute, if the mysqgl target creates the storage table, it will display a message. So, the first time you
run the plugin, you will see an extraline:

Starting up...
nysql > table fil esystem doesn't exist, creating it...

Asdataisadded to the database the row count will increase. Thefollowing showsaMySQL interactive
session where the number of entriesin the filesystem table is counted:

nmysql > SELECT COUNT(*) frommonitoring.filesystem G

IR R SR RS EEEEEEEEEEEEEEEEE SRS 1 I’OW IR R SR RS EEEEEEEEEEEEEREEEEEES]
COUNT(*): 20
1 rowin set (0.00 sec)

nysql >

The same SQL can be executed from the command-line. For example:

paul @onachai n: ~$ nysql --skip-col um-nanes -se \
> ' SELECT COUNT(*) FROM nonitoring.fil esystem'
22

paul @onachai n: ~$

Y ou may need to specify which MySQL user to use and (usually) request that mysgl client prompts
you for a password:

nysqgl -uuser [-p] --skip-column-names -se SQL- query

32

MonAMI by example

Using the stored data

Once the monitoring data is in the MySQL database, it can be used as any other data stored in a
database. Thisgreatly increases the opportunity with which you can conduct post-analysis of the mon-
itoring data.

Perhapsthe quickest way of analysing theavailabledataistowrite SQL queries. However, thisrequires
knowledge of SQL before one can write custom queries and other methods may be easier.

z Handling awkward column names

The above example has column names of root-available and home-available. Because these names include the
hyphen character (-), they must be quoted by placing these words inside back-ticks (e.g. “ r oot - avai | abl e*)
when used in SQL queries. The same is true if the column name is a MySQL reserved word, such as SELECT
and LI KE.

Another option is to build dynamic web pages that display information from the database. The PHP
language includes support for querying a MySQL database. It aso includes support for building cus-
tom graphics through the GD library. Using these toals, it isrelatively easy to build custom graphs to
that are dynamic, based on the data stored in MySQL.

For the purpose of this tutorial, we shall use OpenOffice to analyse the monitoring data. There are
two parts: how to obtain live data from the database within a spreadsheet and how to plot and export
graphs using this data. The instructions are written for OpenOffice v2.2; other versions may require
adlightly different process.

Although this tutorial uses OpenOffice, a similar procedure should work for other spreadsheet pack-
ages.

Creating a spreadsheet with monitoring data

Thispart of thetutorial showshow tolink the datagathered in MySQL into an OpenOffice spreadsheet.
This allows for easy post-analysis of the data using normal spreadsheet functions.

1. Start OpenOffice.

2. Create database document file. This document will hold OpenOffice's understanding of the
MySQL database.

a4 Select File — New — Database from the menu or click on the New, Database button. The
Database Wizard dialogue box should appear.

b. Select Connect to an existing database, choose the MySQL database type and either
click on the Next>> button or type Alt+N.

c. Select Connect using JDBC (Java Database Connectivity) and either click on the
Next>> button or type Alt+N.

d. Complete the requested information:

Name of the database noni toring

Server URL | ocal host (or whatever isthe MySQL server host-
name). N.B. thisfield takes a hostname, not a URL.

Port number use the default port.

MySQL JDBC driver class com nysql . jdbc. Driver

Then either click on the Finish button or type Alt+F.

33

MonAMI by example

3.

e.

The Save as dialogue box will appear. Save the resulting OpenDocument Database docu-
ment somewhereasf s- noni t ori ng. odb

Create new spreadsheet that has data from the filesystems table imported.

a

Select File - New - Spreadsheet from the menu or click on the New Spreadsheet button.
Thiswill create a new, empty spreadsheet.

Select View - Data Sources from the menu or press F4. The Data Sources section should
appear above the spreadsheet. The Data Source Explorer (left pane of the Data Sources
section) should be visable and show atree structure, with f s- moni t or i ng as one of the
root elements.

Expand the fs-monitoring and Tables branches, and select monitoring.filesystems. You
should see data from the filesystems table appear within the right pane of the Data Explorer
section.

Click on monitoring.filesystems and drag this over to a cell within the spreadsheet. You
will see the data appear within the spreadsheet, which will be highlighted.

With the data from database is imported, you have the full spectrum of analysis tools available from
the spreadsheet. Y ou can perform statistical or trend analysis.

Updating theimported data

The spreadsheet remembersthat the monitoring datawas originally taken from adatabase. Y ou can fresh theimport-
ed data by selecting one of the cells within the imported data and selecting Data - Refresh Range from the menu.

Creating graphs from monitoring data

Perhaps the most useful action is to plot a graph using the gathered data. The following procedure
describes how to create a stand-al one image of a graph (as PNG-, EPS- or SV G- formatted file).

1

2.

Start OpenOffice and load the spreadsheet containing the imported data.

Create a chart, using imported monitoring data.

a

Make surethe datais highlighted, then either select Insert — Chart... from the menu or click
on the Insert Chart button. Then click and drag out a region on the spreadsheet where you
want the graph to appear. After doing this, the AutoFormat Chart dialogue box will appear.

Make sure First row as label and First colum as label options are both selected and either
click on the Next>> button or press Alt+N.

Select the Areas option from Choose a chart type and either click on the Next>> button
or press Alt+N.

Select the Stacked option from Choose a variant and either click on the Next>> button
or press Alt+N.

Enter chart information:
Chart title St or age usage
X axis Avail abl e space / MB

Then click on the Create button or press Alt+A.

Export chart asa PNG-, EPS- or SV G- formatted file.

MonAMI by example

& With the chart selected, either select Edit - Copy from the menu or press Ctrl+C.

b. Create anew drawi ng. Either select File — New — Drawing from the menu or click on the
New, Drawing button. Thiswill create a new, empty drawing window.

C. Either select Edit — Paste from the menu or press Ctrl+V.

d. With the chart still highlighted, select File - Export... from the menu.

e. WithinFile format, select the appropriate format (e.g. PNG, EPS or SV G), enter afilename
in the File name input and either click on Export... or press Alt+E

f. For some file formats some aditional information is required. If so, a dialogue box will
appear requesting information. Complete this information and click on OK.

Watching database disk usage

Over time, the monitoring data stored within the MySQL database will increase. We must take care
to keep the table sizes reasonable. MonAMI can be used to make sure sufficient space is available.

If MonAMI is running on the MySQL server is running, then the filesystem plugin can monitor the
available space. The nagios plugin can provide an alert if the filesystem space becomes too low.

The MonAMI mysgl plugin is also a monitoring plugin. In addition to stores monitoring data, it can
query the current status of the MySQL database system and the tables stored within databases. The
plugin does this using the MySQL API, so it can monitor the database remotely.

One of the branches (nysql . Database) contains information on each database.
This information includes information on each of that database's tables. So
the branch nysql . Dat abase. noni toring. Table.fil esystens contains informa
tion on our filesystems table, pat of the monitoring database. The metric
... Table.filesystens. Datafil e.current records the current space taken up by the
filesystems table in Bytes. Using this, one can monitor the space the table is taking up and trigger an
alert once this table reaches a critical level and intervention is needed.

An example configuration is:

[filesysten
nane = root-fs
| ocation =/
cache = 2

[fil esysteni

nane = hone-fs

| ocation = /hone
cache = 2

Once a minute, record / and /hone stats into MySQL dat abase and
updat e Nagi os st at us.

[sanpl e]

read = root-fs, home-fs

wite = nysql, nagios-fs

interval = 1m

Every ten minutes, update Nagi os status of MySQ. storage usage

[sanpl e]

read = nysql . Dat abase. monitoring. Table.fil esystens. Datafile. current
wite = nagi os-nysq

interval = 10m

35

MonAMI by example

Store data in MySQL dat abase
[mysal]
dat abase = nonitoring
user = nonam -writer
password = sonet hi ngSecr et
table = fil esystem
field root-available : root-fs.capacity.avail able
field home- avai | abl e : home-fs.capacity. avail abl e

Nagi os checks for file-system
[nagi os]
name = nagi os-fs
host nagi os-svr. exanpl e. org
port 5668
password = Not Secr et Enough

service = rfs : ROOT_FI LESYSTEM
check = rfs : root-fs.capacity-available, 10, 0.5
check = rfs : root-fs.files.available, 400, 100

service = hfs : HOME_FI LESYSTEM

check = rfs : hone-fs.capacity-available, 100, 10
check = rfs : hone-fs.files.available, 400, 100

Nagi os checks for MySQL

[nagi os]

name = nagi 0s- nmysq

host = nagi os-svr. exanpl e.org
port = 5668

password = Not Secr et Enough

service = ms : MYSQL_SPACE

Warn: 20 MB, Crit: 1 GB

check = ms : nysql.Database. nonitoring. Table.fil esystens. Datafile.current,\
20971520, 1073741824

36

	MonAMI by example
	Table of Contents
	1. Introduction
	2. Simple periodic monitoring
	3. Selecting and merging available data
	4. Caching and named samples
	5. On-demand monitoring
	6. Plotting data with Ganglia
	7. Using Nagios to trigger alerts
	8. Writing data into MySQL

