
1

MonAMI by example
Paul Millar <p.millar@physics.gla.ac.uk>

Table of Contents
1. Introduction .. 2
2. Simple periodic monitoring ... 6
3. Selecting and merging available data .. 9
4. Caching and named samples .. 15
5. On-demand monitoring ... 18
6. Plotting data with Ganglia ... 22
7. Using Nagios to trigger alerts .. 27
8. Writing data into MySQL ... 31

MonAMI by example

2

1. Introduction
This tutorial aims to teach you how to configure MonAMI. It is split into different sections, each
exploring a specific example configuration file. The example files start off simple, but they get more
complex as you proceed. If you find you are having difficulty, try rereading the previous section: you
might have missed something there.

The subject of this tutorial is MonAMI: a data-collection framework that can provide monitoring
information for different monitoring systems. MonAMI consists of a daemon and a set of plugins. The
plugins provide the useful functionality, such as collecting monitoring information about resources or
sending that information to monitoring systems. This will help you monitor your computer resources,
allowing you to provide a reliable service.

MonAMI works in collaboration with existing monitoring systems. It collects data describing your
services and sends it to a monitoring system, or multiple systems. MonAMI itself does not draw pretty
graphs, provide trend analysis, or alert you if a service is looking suspicious. This is deliberate: there
are many monitoring packages that provide these features already. Instead, it concentrates on getting
information out of whatever services you are running.

Since MonAMI is designed not to favour a particular monitoring system, this tutorial will begin by
concentrating on the basics without requiring any particular monitoring system. Later on, the sections
will concentrate on using MonAMI in more specific situations. These section may use specific appli-
cations or monitoring systems. Wherever possible, alternatives are given.

Typographical conventions
This tutorial uses symbols and different typeface to label the different material. Sections that contain
contents of a file use a slightly smaller mono-spaced font and are contained within a box.

With most file contents included, there are some small circled numbers. When copying the text files,
don't copy them! They are not part of the file's contents, but are to draw your attention to specific
points of interest. These points are explained immediately below the text.

The following is an example shell script. The text also includes some circled numbers:

#!/bin/sh ❶

#❷ A simple example script

echo❸ "Hello, world."

❶ the shell to run; in this case, the Borne shell.

❷ comment lines start with a hash symbol (#) and are ignored.

❸ the echo command produces some output.

Other sections display typical output from running a program. They are also displayed in a mono-
spaced font within a box. For example, here is the result of running the above script:

paul@donachain:~$./hello.sh
Hello, world.
paul@donachain:~$

Extra notes...

Throughout the tutorial there are several notes. These are separate short sections, marked with this quill pen icon.
These notes contain additional information that give a greater breadth of understanding, but are extra: you can skip
them if you want to.

Prerequisites
For this tutorial, you need:

MonAMI by example

3

• A computer with MonAMI installed. MonAMI itself does not need root access for any monitoring
activities: it can run quite happily as a normal user. Perhaps the easiest way of getting started is to
install one of the binary packages, available from the MonAMI webpage.

• The ability to edit the MonAMI configuration files. The packaged version of MonAMI uses files
in the /etc directory and have permission settings that require root privileges to edit. If you are
running a version of MonAMI you have compiled for yourself then the location of the configuration
files may differ and you may be able to edit these files without root privileges.

• about 15 minutes of spare time per section. This is an estimate of how long going through an example
will take. If you have more time, you are encouraged to try altering the example configuration and
seeing what happens.

• Various sections have specific requirements:

Section 5 KSysGuard or telnet. KSysGuard is a standard part of the KDE desktop and is avail-
able for GNU/Linux and Macintosh computers. There are instructions for using tel-
net instead of KSysGuard, allowing people who don't have KSysGuard to appreci-
ate on-demand monitoring.

Section 6 Ganglia. This section is based on using MonAMI with Ganglia.

Section 7 Nagios. This section shows how to configure MonAMI to generate alerts within
Nagios.

Section 8 MySQL. This section shows how to store data within a MySQL database. You will
need an account (username and password) that has CREATE and INSERT privi-
leges for some existing database within MySQL.

Installing MonAMI
As it says above, this tutorial assumes you have installed MonAMI on some computer, so the tutorial
does not provide detailed information on how to install MonAMI. However, for the sake of complete-
ness, some comments are included.

You can download MonAMI from the SourceForge download area. There are links to there from the
MonAMI home page [http://monami.sourceforge.net/]. You should find the latest version available as
binary and source RPMS, along with a compressed tar file containing the source.

The binary RPMs are split into a core RPM, several plugin RPMs and a documentation RPM. The
core RPM provides basic infrastructure and a collection of plugins with no external dependencies. The
various plugin RPMs provide additional functionality, but also include some dependencies on other
libraries. The documentation RPM contains PDF and HTML versions of the User Guide.

There is also a yum and apt repository for these RPMs. These are hosted at ScotGrid. To use the yum
repository, copy the following text as /etc/yum.repos.d/monami.repo.

[monami]
name=MonAMI -- your friendly monitoring daemon
Use either "308" or "44" below.
#baseurl=http://monami.scotgrid.ac.uk/scientific/308/$basearch/
baseurl=http://monami.scotgrid.ac.uk/scientific/44/$basearch/
enabled=1

Configuration files
With the prepackaged version of MonAMI, configuration is held in the /etc/monami.d directory.
In the following examples, you should create a file /etc/monami.d/example.conf. Each ex-
ample is self-contained, so you should overwrite this file for each example.

http://monami.sourceforge.net/
http://monami.sourceforge.net/

MonAMI by example

4

Each section is based around a theme and each theme is usually based around a specific example
configuration file. This section is no exception. However, this section's configuration file is rather
boring as it will have no effect: MonAMI will run identically either with or without this file. It will
run until told to stop.

If you do create the example configuration file, save the content as /etc/monami.d/
example.conf, but make sure you don't copy the circled numbers: they indicate points of interest.

 ## ❶
 ## MonAMI by Example, Section 1
 ##

 ❷
 ## This file does nothing.

Here are some points of interest:

❶ Comments can be added by starting a line with a hash symbol (#). These comment lines are ig-
nored. If a line starts with any other character, then it is not a comment line and will be processed.

❷ Completely blank lines are also allowed. They, too, are completely ignored, so you can include
them anywhere within a configuration file.

Starting and stopping MonAMI
MonAMI will normally detach itself from the shell and redirect its output somewhere (to syslog by
default). This is desirable behaviour for a daemon; but, for the purposes of these tutorial exercises it is
better if MonAMI runs both without detaching from the shell and providing more verbose messages.

To achieve this, run the MonAMI executable directly use the command /usr/bin/monamid -
fv. You can stop MonAMI by typing Ctrl+C.

When starting MonAMI, you will see output like:

paul@donachain:~$ /usr/bin/monamid -fv
 Loading configuration file /etc/monami.conf
 plugin apache loaded
 plugin amga loaded
There will be many similar lines.
 plugin tcp loaded
 plugin tomcat loaded
 Starting up...

When MonAMI is shutting down, you will see the following:

 Waiting for activity to stop...
 Shutting down threads...
 paul@donachain:~$

Usually, when told to shutdown, MonAMI isn't doing anything. If so, then MonAMI will quickly
exit. If MonAMI is collecting data when told to shutdown, you may see a slight delay between the
“waiting for activity to stop...” and “shutting down threads...” messages.
This delay is expected, and will last only for as long as MonAMI needs to finish the current activity.
If the data source is slow, it may take a few seconds.

If shutting down takes longer than a minute, MonAMI will assume something has gone wrong and
a bug within MonAMI or one of the plugins has been found. If this happens, it will record some
debugging information and try harder to stop. Naturally, you should never see this happen!

Getting more information
The information here aims to be self-complete. However, you may be left wondering about some
specific aspect and want to know more. You can get more information from:

MonAMI by example

5

• The packaged versions of MonAMI include manual pages for how to run monamid and the MonAMI
configuration file format: monamid(8) and monami.conf(5).

• The MonAMI User Guide contains a wealth of information about MonAMI, including documenta-
tion on all the plugins and how to configure MonAMI. It is available in PDF and HTML formats,
both as an RPM package and from the MonAMI home page [http://monami.sourceforge.net/].

• If you have a question that isn't answered by any of these references, feel free to join the MonAMI
users mailing list and ask it there.

http://monami.sourceforge.net/
http://monami.sourceforge.net/

MonAMI by example

6

2. Simple periodic monitoring
In this section we will tell MonAMI to record everything it knows about something periodically. This
will introduce periodic monitoring, which is perhaps the most common monitoring activity.

Plugins and Targets
Before looking at the configuration, it would help to understand two concepts within MonAMI: plugins
and targets.

Plugins are fundamental to MonAMI. They allow information to be gathered, stored, or otherwise
processed. Most plugins come in one of two types: either monitoring or reporting.

Monitoring plugins are those that provide information. A monitoring plugin understands how to ob-
tain information from a specific service, program or other source of information. All the peculiarities
with obtaining that information are concealed within the plugin, so they provide a uniform method of
obtaining information. The filesystem and apache plugins are examples of monitoring plugins. Both
are available within the default package.

Reporting plugins will accept monitoring information. They will either store this information or send
it to some monitoring system. The snapshot plugin is an example of a reporting plugin. It will store
all information it is given as a file, overwriting any existing content.

There are yet other plugins that lead a more complex life, such as the sample and dispatch plugins.
Don't worry about these just yet: they'll become clear further along. Some of the aspects of the sample
plugin are mentioned here, but both plugins will be explored more in later sections.

In all, MonAMI comes with many useful plugins and the number grows with each release. They are all
described within the MonAMI User Guide and brief synopses are included within the system manual
(man page) entry on the configuration file format.

Targets are configured instances of a plugin. They exist only when MonAMI is run and are described
by the MonAMI configuration files; for example, whilst the mysql plugin knows (in principle) how to
monitor a MySQL server, it is a target (that uses the mysql plugin) that knows how to monitor a specific
MySQL server instance running on a particular machine, using a particular username and password.

As with plugins, a monitoring target is a target that provides MonAMI with information. It is a con-
figured monitoring plugin. Likewise, a reporting target is a target that accepted information and is
based on a reporting plugin.

An easy way to illustrate the difference between plugins and targets is to consider monitoring several
partitions. The filesystem plugin will monitor a partition. To monitor multiple partitions, one would
configure multiple filesystem targets. Each of these targets will use the filesystem plugin. Although
there may be several filesystem targets, there is only one filesystem plugin.

Configuration file
The example configuration file used in this section will tell MonAMI to measure the current status of
the root filesystem every two seconds and store all the data in the file /tmp/monami-filesystem.
Copy the text below and store it as the /etc/monami.d/example.conf file.

 ##
 ## MonAMI by Example, Section 2
 ##

 # Monitor our root filesystem

 [filesystem] ❶

 location = / ❷

 name = root-fs ❸

MonAMI by example

7

 # Record latest f/s stats every two second

 [sample] ❹
 read = root-fs

 write❺ = snapshot

 interval❻ = 2

 # The current filesystem statistics

 [snapshot] ❼

 ❽
 filename = /tmp/monami-filesystem

The following points are worth noting:

❶ The configuration file is split into stanzas, each of which starts with a line containing the name of
a plugin in square brackets. In this case, the filesystem plugin is mentioned. Each stanza creates
a new target that uses the specified plugin.

❷ Stanzas can have multiple attribute lines describing how the target should behave. Each attribute
line has a keyword, followed by an equals sign, followed by the value (white space is also al-
lowed). Some plugins require certain attributes to be specified; other attributes are optional.

❸ Each target has a name, which must be unique. The name attribute allows you to configure what
a target's name should be.

❹ Sample targets collect together data and send it somewhere. They are also somewhat special:
you can specify any number without explicitly giving them unique names.

❺ On receiving fresh data, the sample target will deliver it to the targets named in the write
attribute.

❻ If a interval attribute is configured, this will be triggered periodically. It states how often the
sample target will request fresh data.

❼ The snapshot plugin accepts data and writes it to disk. The sample sends data to the snapshot
target, which then writes this data to the disk.

❽ If there is no name attribute, the target will take its name from the plugin. Naturally, this only
works if a single target (at most) is created for each plugin.

The sample's interval attribute states how often the sample section will request fresh data. This
happens every two seconds in this example (written as 2s or just 2). The interval can also be
specified in minutes (e.g., every five minutes is 5m), in hours (e.g., every six hours 6h), or in combi-
nations of these (e.g., 1h 30m).

Fast enough?

MonAMI's internal time-keeper works with a time granularity of one second: once-per-second is the maximum rate
that MonAMI can gather data. In fact, there is no particular technical reason that for forcing this maximum rate, but
there is also no compelling reason to increase the maximum sampling rate.

At its heart, MonAMI is asynchronous. It can also gather and store data very quickly. When MonAMI is configured
for event-based monitoring, it can store data with low latency: far faster than once per second. If you think that
once-per-second is too slow, perhaps you can recast your monitoring requirement as one based on event-based
monitoring.

Running the example
Make sure you run MonAMI for at least two seconds. When starting up, MonAMI attempts to spread
its work evenly to reduce the impact of monitoring. It does this by starting the timed monitoring with
a random fraction of the interval time. It can take up to two seconds before MonAMI will monitor the
root filesystem in the example above.

Once data is collected, you should see the file /tmp/monami-filesystem. Depending on your
local filesystem (and which version of MonAMI you are using) you should see output similar to the
following:

"root-fs.fragment size" "1024" (B) [every 2s]

MonAMI by example

8

"root-fs.blocks.size" "1024" (B) [every 2s]
"root-fs.blocks.total" "264445" (blocks) [every 2s]
"root-fs.blocks.free" "142771" (blocks) [every 2s]
"root-fs.blocks.available" "129118" (blocks) [every 2s]
"root-fs.capacity.total" "258.24707" (MiB) [every 2s]
"root-fs.capacity.free" "139.424805" (MiB) [every 2s]
"root-fs.capacity.available" "126.091797" (MiB) [every 2s]
"root-fs.capacity.used" "118.822266" (MiB) [every 2s]
"root-fs.files.used" "68272" (files) [every 2s]
"root-fs.files.free" "56294" (files) [every 2s]
"root-fs.files.available" "56294" (files) [every 2s]
"root-fs.flag" "0" () [every 2s]
"root-fs.namemax" "255" () [every 2s]

Data and datatrees
Monitoring targets will often provide lots of information, often more than you actually want. To keep
this information manageable, it is held in a tree structure, just like a filesystem: files correspond to a
specific metric and directories (or folders) containing other directories and metrics.

The datatrees can be drawn as graphs. The example datatree, shown in the above snapshot output, is
shown in Figure 1. The ellipses represent branches and the rectangle represents metrics.

Anonymous
sample 1

root-fs

fragment
size

1024

B

blocks

capacity

files

flag 0

namemax 255

size
1024

B

total
264445

blocks

free
142771

blocks

available
129118

blocks

total
258.24707

MiB

free
139.424805

MiB

available
126.091797

MiB

used
118.822266

MiB

used
68272

files

free
56294

files

available
56294

files

To refer to a specific metric, you specify a path within the datatree, ignoring the very first element
(shown as a dashed ellipse) as it is redundant. This is similar to how a file has an absolute path within
a filesystem. Instead of using a slash (/ or \) to separate elements of a metric's path, a dot is used. So
the metric in the lower right corner of the diagram is root-fs.files.available.

MonAMI by example

9

3. Selecting and merging available data
In this section, we look at how to select a subset of available information and merging different data-
trees together. This allows us to be selective in what information to present and also to monitor dif-
ferent aspects of the system concurrently.

Configuration file

The following configuration will measure the available free space 1 on the / (root) and /home filesys-
tem and store the latest values in a file /tmp/monami-filesystem.

Copy the configuration below as the /etc/monami.d/example.conf file, replacing any exist-
ing file. Remember, don't try to copy the circled numbers!

 ##
 ## MonAMI by Example, Section 3
 ##

 # Our root filesystem
 [filesystem]
 name = root-fs
 location = /

 # Our /home filesystem

 [filesystem] ❶
 name = home-fs
 location = /home

 # Record latest f/s stats every two seconds
 [sample]

 read = ❷ root-fs❸.capacity.available, home-fs.capacity.available
 write = snapshot
 interval = 2

 # The current filesystem statistics
 [snapshot]
 filename = /tmp/monami-filesystem

A few things to note:

❶ The configuration creates two monitoring targets, called root-fs and home-fs. Both use the
filesystem plugin.

❷ The read attribute is a comma-separated list of metrics or branches.

❸ The first element of the metric's path is the target name.

Running the example

As with the previous example, you should make sure MonAMI is running for at least two seconds to
guarantee that the file /tmp/monami-filesystem has been created or updated. Depending on
your filesystems this file should contain something like the following:

"root-fs.capacity.available" "126.091797" (MiB) [every 2s]
"home-fs.capacity.available" "11178.921875" (MiB) [every 2s]

1 The term “available space” refers to the storage available to a non-root user whereas “free space” is the storage available to the root user.
In general, the free space will be greater than the available space. More information is available in the MonAMI User Guide.

MonAMI by example

10

Combining different datatrees

sample sections can combine different datatrees together by specifying them as a comma-separated
list of sources. The simplest is to include all metrics from two sources, by simply specifying the two
target names:

read = root-fs, home-fs

This will combine all data from the root-fs and home-fs targets, resulting in /tmp/mona-
mi-filesystem output like:

"root-fs.fragment size" "1024" (B) [every 2s]
"root-fs.blocks.size" "1024" (B) [every 2s]
"root-fs.blocks.total" "264445" (blocks) [every 2s]
"root-fs.blocks.free" "142771" (blocks) [every 2s]
"root-fs.blocks.available" "129118" (blocks) [every 2s]
"root-fs.capacity.total" "258.24707" (MiB) [every 2s]
"root-fs.capacity.free" "139.424805" (MiB) [every 2s]
"root-fs.capacity.available" "126.091797" (MiB) [every 2s]
"root-fs.capacity.used" "118.822266" (MiB) [every 2s]
"root-fs.files.used" "68272" (files) [every 2s]
"root-fs.files.free" "56294" (files) [every 2s]
"root-fs.files.available" "56294" (files) [every 2s]
"root-fs.flag" "0" () [every 2s]
"root-fs.namemax" "255" () [every 2s]
"home-fs.fragment size" "4096" (B) [every 2s]
"home-fs.blocks.size" "4096" (B) [every 2s]
"home-fs.blocks.total" "16490546" (blocks) [every 2s]
"home-fs.blocks.free" "3699490" (blocks) [every 2s]
"home-fs.blocks.available" "2861802" (blocks) [every 2s]
"home-fs.capacity.total" "64416.195312" (MiB) [every 2s]
"home-fs.capacity.free" "14451.132812" (MiB) [every 2s]
"home-fs.capacity.available" "11178.914062" (MiB) [every 2s]
"home-fs.capacity.used" "49965.0625" (MiB) [every 2s]
"home-fs.files.used" "8388608" (files) [every 2s]
"home-fs.files.free" "8008120" (files) [every 2s]
"home-fs.files.available" "8008120" (files) [every 2s]
"home-fs.flag" "0" () [every 2s]
"home-fs.namemax" "255" () [every 2s]

The process of combining the two datatrees is shown graphically in Figure 2.

MonAMI by example

11

Anonymous

sample 1

root-fs

home-fs

fragment

size

1024

B

blocks

capacity

files

flag 0

namemax 255

size
1024

B

total
264445

blocks

free
142771

blocks

available
129118

blocks

total
258.24707

MiB

free
139.424805

MiB

available
126.091797

MiB

used
118.822266

MiB

used
68272

files

free
56294

files

available
56294

files

fragment

size

4096

B

blocks

capacity

files

flag 0

namemax 255

size
4096

B

total
16490546

blocks

free
3699490

blocks

available
2861802

blocks

total
64416.195312

MiB

free
14451.132812

MiB

available
11178.914062

MiB

used
49965.0625

MiB

used
8388608

files

free
8008120

files

available
8008120

files

root-fs

fragment

size

1024

B

blocks

capacity

files

flag 0

namemax 255

size
1024

B

total
264445

blocks

free
142771

blocks

available
129118

blocks

total
258.24707

MiB

free
139.424805

MiB

available
126.091797

MiB

used
118.822266

MiB

used
68272

files

free
56294

files

available
56294

files

home-fs

fragment

size

4096

B

blocks

capacity

files

flag 0

namemax 255

size
4096

B

total
16490546

blocks

free
3699490

blocks

available
2861802

blocks

total
64416.195312

MiB

free
14451.132812

MiB

available
11178.914062

MiB

used
49965.0625

MiB

used
8388608

files

free
8008120

files

available
8008120

files

Combining datatrees allows you to combine monitoring results from different targets. In the configu-
ration at the beginning of this section, we merge two datatrees (each datatree has only one metric), but
in general we can combine any number of datatrees, collecting data from any number of targets.

Selecting subsets of a datatree

In the above example, we select just one metric from within each target's datatree. From the root-
fs and home-fs targets, we select only each target's capacity.available metric. This can be
extended to select mulitple metrics from each datatree.

Selecting metrics

To select multiple metrics, simply list the metrics you want as a comma-separated list of datatree paths.
In the following example, two metrics have been selected.

read = root-fs.blocks.available, root-fs.files.available

MonAMI by example

12

root-fs

fragment
size

1024

B

blocks

capacity

files

flag 0

namemax 255

size
1024

B

total
264445

blocks

free
142771

blocks

available
129118

blocks

total
258.24707

MiB

free
139.424805

MiB

available
126.091797

MiB

used
118.822266

MiB

used
68272

files

free
56294

files

available
56294

files

The resulting datatree will include both the blocks.available and files.available met-
rics.

Selecting branches

We can also specify the path of a branch to include all metrics within that branch. The following shows
an example selecting the blocks branch from the root-fs target.

read = root-fs.blocks

root-fs

fragment
size

1024

B

blocks

capacity

files

flag 0

namemax 255

size
1024

B

total
264445

blocks

free
142771

blocks

available
129118

blocks

total
258.24707

MiB

free
139.424805

MiB

available
126.091797

MiB

used
118.822266

MiB

used
68272

files

free
56294

files

available
56294

files

The new datatree will include the metrics root-fs.blocks.size, root-fs.blocks.total,
root-fs.blocks.free and root-fs.blocks.available.

MonAMI by example

13

Vetoing metrics and branches

Sometimes it is easier to say what data you don't want to include. Specific metrics or branches can
be excluded by listing them prefixed with an exclamation mark. The following demonstrates how to
select all of the blocks metrics from the root-fs targe except for the blocks.size metric:

read = root-fs.blocks, !root-fs.blocks.free

root-fs

fragment
size

1024

B

blocks

capacity

files

flag 0

namemax 255

size
1024

B

total
264445

blocks

free
142771

blocks

available
129118

blocks

total
258.24707

MiB

free
139.424805

MiB

available
126.091797

MiB

used
118.822266

MiB

used
68272

files

free
56294

files

available
56294

files

This is easier than listing all the metrics individually: root-fs.blocks.size, root-
fs.blocks.total and root-fs.blocks.available.

The final example shows selecting all metrics except for a metric and those beneath a branch.

read = root-fs, !root-fs.blocks, !root-fs.flag

MonAMI by example

14

root-fs

fragment
size

1024

B

blocks

capacity

files

flag 0

namemax 255

size
1024

B

total
264445

blocks

free
142771

blocks

available
129118

blocks

total
258.24707

MiB

free
139.424805

MiB

available
126.091797

MiB

used
118.822266

MiB

used
68272

files

free
56294

files

available
56294

files

By selecting metrics and branches, and by vetoing selected metrics or branches of metrics, arbitrary
selection of metrics is made easy.

MonAMI by example

15

4. Caching and named samples
In this example, we show caching and named samples. Caching allows you to make sure you never
overload a service from monitoring. Named samples allows logical grouping of related monitoring
from different targets.

Configuration file

As before, copy the configuration file below as the file /etc/monamid.d/example.conf, over-
writing any existing file.

 ##
 ## MonAMI by Example, Section 4
 ##

Our root filesystem
[filesystem]
 name = root-fs
 location = /

 cache = 2 ❶

Our /home filesystem
[filesystem]
 name = home-fs
 location = /home
 cache = 2s

Bring together information about the two partitions
[sample]

 name = partitions ❷
 read = root-fs, home-fs
 cache = 10

Update our snapshot every ten seconds
[sample]

 read = partitions ❸
 write = snapshot
 interval = 10

Once a minute, send data to a log file.
[sample]

 read = partitions.root-fs.capacity.available, \ ❹
 partitions.home-fs.capacity.available
 write = filelog

 interval = 1m ❺

A file containing current filesystem information
[snapshot]
 filename = /tmp/monami-fs-current

A permanent log of a few important metrics

[filelog] ❻
 filename = /tmp/monami-fs-log

Some points of interest:

❶ The cache attribute specifies a guaranteed minimum delay between successive requests for
information. Here, there will always be at least two seconds between consecutive requests.

The value is a time-period: one or more words that specify how long the period should be. This
is the same format as the sample interval attribute, so “5m” is five minutes and “1h 30m” is
an hour and a half.

❷ Like all targets, this name must be unique.

MonAMI by example

16

❸ This sample reads all available metrics from the partitions target. To gather this informa-
tion, the partitions target will read from the two filesystem targets.

❹ Sometimes attribute lines can get quite long. To make them easier to read and edit, long lines
can be broken down into multiple shorter lines provided the last character is a backslash (\).

❺ This interval is deliberately short to allow quick gathering of information. For normal use a much
longer interval would be more appropriate.

❻ The filelog plugin creates a file, if it does not already exit, and appends a new line for each
datatree it receives. It is a simple method of archiving monitoring information.

Running MonAMI
With this example, you should leave MonAMI running for a few minutes. Whilst it is running, you
can check that data is being appended to the log file (/tmp/monami-fs-log) correctly using, for
example, the cat program.

Depending on which version of MonAMI you are using and the current state of your partitions, the
file /tmp/monami-fs-current should look like:

"partitions.root-fs.fragment size" "1024" (B) [every 10s]
"partitions.root-fs.blocks.size" "1024" (B) [every 10s]
"partitions.root-fs.blocks.total" "264445" (blocks) [every 10s]
"partitions.root-fs.blocks.free" "142771" (blocks) [every 10s]
"partitions.root-fs.blocks.available" "129118" (blocks) [every 10s]
"partitions.root-fs.capacity.total" "258.24707" (MiB) [every 10s]
"partitions.root-fs.capacity.free" "139.424805" (MiB) [every 10s]
"partitions.root-fs.capacity.available" "126.091797" (MiB) [every 10s]
"partitions.root-fs.capacity.used" "118.822266" (MiB) [every 10s]
"partitions.root-fs.files.used" "68272" (files) [every 10s]
"partitions.root-fs.files.free" "56294" (files) [every 10s]
"partitions.root-fs.files.available" "56294" (files) [every 10s]
"partitions.root-fs.flag" "0" () [every 10s]
"partitions.root-fs.namemax" "255" () [every 10s]
"partitions.home-fs.fragment size" "4096" (B) [every 10s]
"partitions.home-fs.blocks.size" "4096" (B) [every 10s]
"partitions.home-fs.blocks.total" "16490546" (blocks) [every 10s]
"partitions.home-fs.blocks.free" "3699442" (blocks) [every 10s]
"partitions.home-fs.blocks.available" "2861754" (blocks) [every 10s]
"partitions.home-fs.capacity.total" "64416.195312" (MiB) [every 10s]
"partitions.home-fs.capacity.free" "14450.945312" (MiB) [every 10s]
"partitions.home-fs.capacity.available" "11178.726562" (MiB) [every 10s]
"partitions.home-fs.capacity.used" "49965.25" (MiB) [every 10s]
"partitions.home-fs.files.used" "8388608" (files) [every 10s]
"partitions.home-fs.files.free" "8008117" (files) [every 10s]
"partitions.home-fs.files.available" "8008117" (files) [every 10s]
"partitions.home-fs.flag" "0" () [every 10s]
"partitions.home-fs.namemax" "255" () [every 10s]

The file /tmp/monami-fs-log should look like:

time partitions.root-fs.capacity.available partitions.
home-fs.capacity.available
2007-10-03 11:12:59 126.091797 11178.707031
2007-10-03 11:13:59 126.091797 11178.703125
2007-10-03 11:14:59 126.091797 11178.703125
2007-10-03 11:15:59 126.091797 11178.710938

Named sample targets

A named sample target is simply a sample target that has a name attribute specified. In contrast, a
sample without any specified name attribute is an anonymous sample. All the samples in previous
sections are anonymous.

MonAMI by example

17

The main use for named samples is to allow grouping of monitoring data. Suppose you wanted to
monitor multiple attributes about a service; for example, count active TCP connections, watch the
application's use of the database, and count number of daemons running. You may, for ease of han-
dling, want to build a datatree containing the combined set of metrics. A named sample allows you
to do this.

Another aspect of named targets is that it allows other targets (such as anonymous samples) to request
monitoring data from the named sample. Named samples can be used, in effect, as simple monitoring
target (such as root-fs target above).

What's in a name?

In fact, anonymous sample sections do have a name: their name is assigned automatically when MonAMI starts.
However, you should never use this name or need to know it. If you find you need to collect data from an anonymous
sample, simply give the target a name.

Note that, although not illustrated in the above example, named samples will honour the interval
attribute. This allows them to provide periodic monitoring information (in common with anonymous
samples) whilst simultaneously allowing other targets to request information at other times.

Caching

Monitoring will always incur some cost (computational, memory and sometimes storage and network
bandwidth usage). Sometimes this cost is sufficiently high that we might want to rate-limit any queries
so, for example, a service is never monitored more than once every minute.

Within MonAMI, this is achieved with the cache attribute. You can configure any target to cache
gathered metrics for a period. In the above example, metrics from the partitions named sample
are cached for ten seconds. If one of the anonymous samples had the interval attribute set to less than
10 seconds, they would not trigger any gathering of fresh data. Instead, they would receive the previous
(cached) result until the ten-second cache had expired.

Default caching policy

By default MonAMI will cache all results for one second. Since MonAMI monitoring frequency (the interval at-
tribute) has a granularity of one second, this default cache will not be noticed when a target obtains data. However,
if multiple targets request data from the same target at almost the same time (to within a second), the default cache
ensures all the requests receive data from a single datatree.

Note that the cache attribute works for sample targets, as demonstrated in the above example.
Caching targets with different cache-intervals allows a conservative level of caching for the bulk of
the monitoring activity whilst retaining the possibility of adding more frequent monitoring.

Some monitoring plugins will report a different set of metrics over time; this causes the structure of
the datatree changes due to the number of reported metrics varying. Most often this happens when the
service being monitored changes availability (when a service “goes down” or “comes up”), although
some services report additional metrics once they have stabilised. The Apache HTTP server is an
example; after an initial delay, it provides a measure of bandwidth usage.

When a change in a datatree structure is detected, MonAMI will invalidate all its internal caches that
use this datatree; independent caches are left unaffected. Subsequent requests to a target for fresh data
will gather new data, either freshly cached or direct from the monitoring target. This allows the new
structure to propagate independent of the cache attributes.

MonAMI by example

18

5. On-demand monitoring
This example demonstrates on-demand monitoring. On-demand monitoring is where MonAMI will
not trigger gathering information internally. Instead, something outside of MonAMI requests infor-
mation. Only when metrics are requested will MonAMI acquire the data.

Another characteristic of on-demand monitoring is that one can present a large number of metrics.
After MonAMI has started, the user can choose which metrics they are interested in. Typically, the user
can change their selection (the user decides to start monitoring some metric, or stop monitoring it) or
stop monitoring altogether. MonAMI will adjust accordingly; for example, if no users are requesting
on-demand monitoring information and no internally triggered monitoring is configured, MonAMI
will not gather any information. Using on-demand monitoring, one can make provision for monitoring
a vast number of metrics that are normally uninteresting without burdening the monitored systems.

The example used in this section is KSysGuard. It is an excellent demonstration of the benefits of on-
demand monitoring: we do not specify in the MonAMI configuration which of the available metrics is
to be monitored. Rather, the user (through the KSysGuard GUI) chooses what to monitor. The user can
change their mind by adding or removing metrics. When the user closes the KSysGuard application,
no further monitoring is triggered.

KSysGuard is not unique in using on-demand monitoring: Nagios uses it for it's NRPE monitoring.
However, KSysGuard is both easy to use and easy to configure, making it ideal for demonstration
purposes.

Configuration file
The following example will include both internally triggered monitoring (as in the previous examples)
and on-demand monitoring. As before, a log file is maintained that records the current status of two
metrics. In addition, users are allowed to query any of the available metrics through the KSysGuard
interface. KSysGuard was chosen as it is readily available and simple to understand, but the on-demand
concept applies to some other monitoring systems.

As before, copy the following configuration file as /etc/monami.d/example.conf.

##
MonAMI by Example, Section 5
##

Our root filesystem
[filesystem]
 name = root-fs
 location = /

 cache = 2 ❶

Our /home filesystem
[filesystem]
 name = home-fs
 location = /home
 cache = 2

Bring together all information we want KSysGuard to see

[sample] ❷
 name = ksysguard-sample
 read = root-fs, home-fs

 cache = 10 ❸

Also record the root and /home available space
[sample]
 read = root-fs.capacity.available, \
 home-fs.capacity.available
 write = root-fs-log
 interval = 1m

MonAMI by example

19

[filelog]
 name = root-fs-log
 filename = /tmp/monami-root-fs-log

Allow KSysGuard to request information
[ksysguard]

 read = ksysguard-sample ❹

Some points to note:

❶ Each of the filesystem targets has a two second cache. This is to catch when periodic and on-
demand monitoring requests happen to coincide.

❷ The named sample aggregates information for the ksysguard target. We don't specify interval or
write attributes as monitoring will be “on demand”: ksysguard target will request information
as KSysGuard requires it.

❸ The ten-second cache is included for safety: it prevents a KSysGuard user from overloading the
services.

❹ The read attribute declares from which target the datatree presented to KSysGuard is obtained.

Running the example with telnet
This section is included for those who do not have the KSysGuard GUI installed or for those who want
to see some of the gory detail! If you have access to KSysGuard and don't want to type in commands
in a command-line environment, feel free to move onto the next section.

To emphasise the point: people do not normally use the telnet client program for monitoring; we use it
here but the program is included on almost every Unix-like platform. You are not expected to use this
routinely. It is here to illustrate the idea of on-demand monitoring in environments that do not have
KSysGuard installed. This hands-on approach also demonstrates that you (the user) are in control of
the monitoring schedule, not MonAMI.

Start MonAMI in the usual non-detaching verbose mode: /usr/bin/monamid -fv. After starting
MonAMI, and in a separate terminal, type telnet localhost 3112. This starts the telnet client
so it connects to the MonAMI running on the local machine. You will see something like:

paul@donachain:~$ telnet localhost 3112
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
MonAMI 0.9

 -- Welcome to the ksysguard plugin for MonAMI --
This aims to be compatible with ksysguard's own ksysguardd daemon
and provide information for ksysguard to display.

ksysguardd>

The text ksysguardd> is a prompt, indicating you can enter a command. To start with, type the
command MONITORS, which lists all available metrics. You will see a list of metrics, followed by
the prompt.

ksysguardd> MONITORS
root-fs/fragment size integer
root-fs/blocks/size integer
root-fs/capacity/free float
More metrics are reported.
home-fs/files/available integer
home-fs/flag integer
home-fs/namemax integer
ksysguardd>

MonAMI by example

20

Different separator character

As with MonAMI, KSysGuard groups metrics within a tree structure. However, KSysGuard expects path elements
to be seperated using the forward slash (/). The ksysguard plugin presents the data correctly for the KSysGuard
GUI, so the metrics have a different separator character.

To obtain the metadata about a metric, type in the metric's full name immediately followed by a ques-
tion mark. This will return a single line, containing the metric name, the minimum and maximum
values for that metric (both zero if they are unknown) followed by the units. For example:

ksysguardd> home-fs/capacity/total?
home-fs/capacity/total 0 0 MiB
ksysguardd>

To obtain a metric's current value, type in the metric's full name. You can repeat this as often as you
like; if correctly configured, MonAMI's caching policy will prevent queries from impacting heavily
on any monitored system.

ksysguardd> home-fs/capacity/available
11177.742188
ksysguardd> root-fs/capacity/available
126.091797
ksysguardd>

To terminate the connection, either close the telnet connection (Ctrl+] then type close and Enter),
or instruct the MonAMI ksysguard plugin to disconnect (Ctrl+D).

You can run multiple connections concurrently, requesting the same or different metrics simultane-
ously.

Running the example with KSysGuard
Start MonAMI as previously (monamid -fv). Whilst MonAMI is running, it will listen on port 3112
for incoming connections. This is the default port to which KSysGuard will attempt to connect.

With MonAMI running, start the KSysGuard GUI: ksysguard. From the menu bar, select File →
Connect host... The resulting dialogue box will request information about how to connect to MonAMI.
Enter the name of the host MonAMI is running on in Host and ensure that, under Connection Type,
Daemon is selected and that Port is set to 3112.

Figure 1. KSysGuard about to connect to MonAMI.

MonAMI by example

21

KSysGuard and host names

The GUI will not accept localhost as the host name for MonAMI. This is because the GUI starts its own da-
ta-gathering daemon, ksysguardd, automatically. It considers localhost always to refer to this data-gathering
daemon. To connect to MonAMI, use either machine's node name (run uname -n) if this is different to local-
host, or its fully-qualified domain name.

Clicking on the Ok button should result in the host name appearing in the left Sensor Browser pane.
If this doesn't work, check that MonAMI is running, that you entered the host name correctly and
there is no firewall blocking connections. If connecting to MonAMI remotely, you must authorise
the remote connection using the allow attribute (see the MonAMI User Guide or monami.conf(5)
manual page for further details).

Once the hostname appears on the sensor browser, click on the + symbol (next to the hostname) to see
the available sensors. If MonAMI is reporting many metrics, expanding the tree of available metrics
can be a slow process: be patient.

To begin monitoring, drag and drop a metric to a display area. It is often easiest to create a new

worksheet. Select File → New worksheet... to generate a new worksheet in which you can drag-and-
drop sensors.

Figure 2. KSysGuard monitoring available capacity.

Wrong metric names

You may notice that some of the metrics are inappropriately labelled. For example, metrics that have a path that
ends with “free” are displayed as “Free Memory”, those ending with “total” are displayed as “Total Accesses” and
“used” as “Used Memory”. This is a bug in the current version of KSysGuard.

Mixed monitoring
The above configuration has MonAMI undertake interally triggered (or periodic) monitoring whilst
allowing on-demand monitoring. MonAMI will record data to the root-fs-log reporting target
every minute.

This file-logging of data is independent of and concurrent to any KSysGuard monitoring, except that
MonAMI will honour the cache settings. Each of the two filesystem monitoring targets will cache
results for two seconds, irrespective of whether the request came from KSysGuard or from the anony-
mous sample section.

MonAMI by example

22

6. Plotting data with Ganglia
This section describes interfacing MonAMI with Ganglia. To try the configuration within this section
you will need to have Ganglia available. Setting up Ganglia is easy, but is outside the remit of this
tutorial. Further details, including Ganglia tutorials and binary packages, are available from the Gan-
glia project site [http://ganglia.sourceforge.net/].

This section will start with simple filesystem monitoring and build into a demonstration of full mon-
itoring of Torque and Maui monitoring. This example can be adapted to monitor other systems that
MonAMI supports, such as DPM, MySQL, Tomcat...

Configuration file
As before, copy the following configuration file as /etc/monami.d/example.conf.

##
MonAMI by Example, Section 6
##

Our root filesystem
[filesystem]
 name = root-fs
 location = /

 cache = 2 ❶

Our /home filesystem
[filesystem]
 name = home-fs
 location = /home

 cache = 2 ❶

Once a minute, record / and /home available space.
[sample]
 read = root-fs.capacity.available, \
 home-fs.capacity.available
 write = ganglia

 interval = 1m ❷

Ganglia target that accepts data
[ganglia]

 ❸

Some points to note:

❶ The cache attributes enforce a “never more than” policy: never more than once every two
seconds.

❷ MonAMI controls how often data in Ganglia is updated: updating data once a minute is a common
choice.

❸ The ganglia plugin will attempt to read from the gmond.conf file. The plugin will search for
this file in a couple of standard places. If found, the plugin will know how to send metric-update
messages without any attributes.

Running the example
It is recommended (although not essential) that the Ganglia monitoring daemon gmond is running
on the machine. The gmond daemon monitors many low-level facilities and also provides a common
place for Ganglia configuration: the file gmond.conf. If the gmond.conf is not in a standard
location, you can specify where to find it using the config attribute. If gmond isn't installed, you can
specify how to send Ganglia metric update messages using other attributes within the ganglia target.
Refer to the MonAMI User Guide or the monami.conf(5) manual page for further details.

http://ganglia.sourceforge.net/
http://ganglia.sourceforge.net/
http://ganglia.sourceforge.net/

MonAMI by example

23

When run, MonAMI will emit the corresponding UDP multicast packets containing the metric
information. The various gmond daemons that are listening will pick up the metrics and, when queries
by the gmetad daemon, will present the latest information.

The gmetad daemon will poll gmond daemons periodically. By default this is 15 seconds, although it
can be altered through the gmetad.conf configuration file. This means that the new metrics defined
in the above example, under the default Ganglia configuration, may take up to 75 seconds to be visible
in the web front-end.

Sample results
To view the results, look at the Ganglia page (the Host-specific view) for server that is running
MonAMI. You should see two additional graphs towards the bottom of the page entitled “root-
fs.capacity.available” and “home-fs.capacity.available”. Here is an example:

15:00 15:20 15:40

 3.0 k

 3.2 k

 3.4 k

M
iB

root-fs.capacity.available

R
R

D
T

O
O

L
 / T

O
B

I O
E

T
IK

E
R

 svr017.gla.scotgrid.ac.uk last hour (now 3,361)

15:00 15:20 15:40

 90 k

 100 k

 110 k

 120 k

M
iB

home-fs.capacity.available

R
R

D
T

O
O

L / T
O

B
I O

E
T

IK
E

R

 svr017.gla.scotgrid.ac.uk last hour (now 96,918)

Figure 3. Ganglia generic single-metric graphs

Ganglia also provides a list of extra metrics on the Gmetrics web-page. This page has a linked to from
the Host view: follow the “Gmetrics” link on the left side. On the Gmetrics page, you should see two
entries underneath the “User Defined Metrics (gmetrics)” title.

Figure 4. Example Gmetric page.

Each metric reported to Ganglia is named after its path within the datatree. MonAMI keeps track of
the units for each metric. This information is passed on to Ganglia, allowing it to display the current
value with the appropriate units.

Dealing with old data
The figure above shows a table where the first three columns are TN, TMAX and DMAX. The TN value is
the number of seconds since the metric was last updated. If the webpage is reloaded, TN will increase
until a new metric value is received by Ganglia.

TMAX indicates the freshness of a metric. If TN exceeds TMAX, then Ganglia is expecting a new value.
However, TMAX is only advisory: Ganglia takes no action when TN exceeds TMAX.

Delays in getting new data

Sometimes TN will exceed TMAX. Bear in mind that the PHP web-page queries gmetad to obtain information.
In turn, gmetad will poll one or more gmond instances periodically (by default, every 15 seconds). This may
introduce a delay between new metric values being sent and becoming visible within the web-pages.

MonAMI by example

24

DMAX indicates for how long an old metric should be retained. If TN exceeds DMAX then Ganglia
will consider that that metric is no longer being monitored. Therefore, it will discard information
about that metric. Historic data (the RRD files from which the graphs are drawn) will be kept, but
the corresponding graphs will no longer be displayed. If fresh metric values become available, then
Ganglia will start redisplaying the metric's graphs and the historic data may contain a gap.

Choosing a value for DMAX is a compromise. Too short an interval risks metrics being dropped acci-
dentally if a data-source takes an unusually long time to provide information, whilst too long an in-
terval results in unnecessary delay between a metric no longer being monitored and Ganglia dropping
that metric.

Automatic dropping of old metrics can be disabled by setting DMAX to zero. If this is done, then
there is no risk of Ganglia mistakenly dropping a metric. However, if a metric receives no further
updates, Ganglia will continue to plot the last value indefinitely (or until gmond gmetad daemons
are restarted, in that order). Unless the daemons are restarted, false data will be displayed, providing
a potential source of confusion.

Calculating DMAX

MonAMI will calculate an estimate for DMAX based on observed behaviour of the monitoring targets. A fresh
estimate is calculated for each metric update. If the monitoring environment changes, MonAMI will adjust the
corresponding metrics' DMAX value, allowing Ganglia to adapt to changes in the underlying monitoring system's
behaviour.

Preventing metric-update loss
An issue with providing monitoring information for Ganglia is how to deal with large numbers of
metrics. MonAMI can provide very detailed information, resulting in a large number of metrics. This
can be a problem for Ganglia.

The current Ganglia architecture requires each metric update be sent as an individual metric-update
message. On a moderate-to-heavily loaded machine, there is a chance that gmond may not be sched-
uled to run as the messages arrive. If this happens, the incoming messages will be placed within the
network buffer. Once the buffer is full, any subsequent metric-update messages will be lost. This
places a limit on how may metric update messages can be sent in one go. For 2.4-series Linux kernels
the limit is around 220 metric-update messages; for 2.6-series kernels, the limit is around 400.

Trying not to cause problems.

The ganglia plugin tries to minimise the risk by sending metric-update messages in bursts of 200 metric updates (so
less than the 220 metric-update limit on 2.4-series kernels) with a short pause between successive bursts. The time
between bursts gives the gmond daemons time to react. There are attributes that fine-tune this behaviour, which
the User Guide discusses.

One simple solution is to split the set of metrics into subsets. If these subsets are updated independently
and none have sufficent metrics to overflow the network buffer, then there will be no metric-update
message loss. If more than one system is to be monitored, this splitting is easily and naturally achieved.

The following example shows a configuration for monitoring a local Torque and Maui installation.
The configuration demonstrates how two sample stanzas can isolate the monitoring work. This spreads
the monitoring load and reduces the impact on Ganglia.

##
MonAMI by Example, Section 6.
Torque and Maui monitoring
##

[torque]

 cache = 60 ❶

[maui]

 user = root ❷

 cache = 60 ❶

MonAMI by example

25

[sample] ❸
 read = torque.Jobs, torque.Queues.Execution
 write = ganglia
 interval = 1m

[sample] ❸
 read = maui, !maui.Fairshare.User
 write = ganglia
 interval = 1m

[ganglia]

 ❹

Some points:

❶ Make sure we never query the Torque or Maui services more than once a minute.

❷ The user attribute specifies as which user the MonAMI maui plugin should claim to be running;
the value root is commonly authorised. It is possible to configure Maui to accept a non-root
user, although this brings no additional security. For more details, see the MonAMI User Guide.

❸ The Torque and Maui monitoring are done independently.

❹ We assume that Ganglia gmond is installed. If this is so, the MonAMI ganglia plugin will parse
the gmond file for information on how to send metric-update messages.

The following shows the gmetric page, showing a subset of the available metrics:

Figure 5. Ganglia gmetric page showing some metrics for Torque and Maui.

Producing complex graphs
MonAMI can produce a large number of metrics. The standard Ganglia web front-end shows a single
graph (torwards the bottom of page) for each metric. Although these single-metric graphs are func-
tional, they help little towards understanding the “bigger picture” if there are a large number of metrics
being recorded.

Ganglia's web front-end contains a number of graphs that aggregate metrics provided by the gmond
daemon. One such graph shows the number of runnable processes, the 1-minute load average and
the number of CPUs. Another shows the total in-core memory of the machine, split by usage. These

MonAMI by example

26

graphs provide a good overview of the computer's current behaviour and greatly assist in diagnosing
problems as they arise.

Unfortunately, these default aggregation graphs are hard-coded into the PHP. There is currently no
standard way to extend the Ganglia web front-end to include custom graphs. There is also no method
to specify that certain graphs should be displayed for only one particular machine: the one that is
running MonAMI collecting the interesting metrics.

The “external” package

MonAMI provides monitoring information for any number of monitoring systems. Strictly speaking, its job is done
once data is within those systems. However, to get the most out of any particular system, you may need to tweak
the monitoring system, or expand some scripts to better match the breadth of data MonAMI provides.

The external package contains a number of application-specific instructions, sample configuration files and mod-
ules. It is both a reference point for using MonAMI with particular monitoring systems and a platform with which
to explore what is possible.

The section of the “external” package for Ganglia includes a PHP framework called multiple-graphs.
This includes support for frames (in which multiple graphs and tables can be included) and pop-ups
(allowing the display of context-specific information). The package also includes support for host-
specific graphs.

The following figure shows the multiple-graphs framework in action: some of the Torque monitoring
data is shown as graphs and pie-charts.

Figure 6. Some Torque graphs from the Host-view page.

The data is provided by MonAMI running with a configuration similar to the above example. The
graphs and pie-charts are generated using the multiple-graphs library. The exact PHP configuration
for generating the Torque and Maui frame is also available within the “externals” package as one of
the examples. These are documented and include installation instructions.

MonAMI by example

27

7. Using Nagios to trigger alerts
Nagios is a sophisticated monitoring system. One of its major strengths is its ability to monitor many
services and provide a configurable response to services going into Warning or Critical states.
More information is available at the Nagios project home page [http://www.nagios.org/].

This section will show how to configure MonAMI and Nagios to alert if something is wrong. To get
the most out of this section, you will need Nagios configured on your computer or computers. Nagios
requires little configuration for a basic setup: the default configuration should be sufficient.

Currently, MonAMI offers only passive monitoring. This is where MonAMI sends updates to Nagios
indicating the current state of the monitored services. Passive monitoring requires some extra config-
uration. The section Section 7, “Setting up Nagios” gives an overview of this.

Configuration file
As before, copy the following configuration file as /etc/monami.d/example.conf.

##
MonAMI by Example, Section 7
##

Our root filesystem
[filesystem]
 name = root-fs
 location = /
 cache = 2

Our /home filesystem
[filesystem]
 name = home-fs
 location = /home
 cache = 2

Once a minute, record / and /home available space.
[sample]
 read = root-fs, home-fs
 write = nagios

 interval = 1m ❶

Nagios target that sends alert data.
[nagios]

 host = nagios-svr.example.org❷
 port = 5668
 password = NotSecretEnough

 service❸ = rfs❹ : ROOT_FILESYSTEM❺

 check❻ = rfs❹ : root-fs.capacity.available❼, 10❽, 0.5❾
 check = rfs : root-fs.files.available, 400, 100

 service = hfs : HOME_FILESYSTEM
 check = hfs : home-fs.capacity.available, 10, 0.5
 check = hfs : home-fs.files.available, 400, 100

Some points to note:

❶ Once a minute, this sample target will query the current status of the filesystems and send the
new data to the nagios target.

❷ This is the host that has the nsca daemon. nagios-svr.example.org is an example FQDN
and should be replaced with the hostname of your Nagios server.

❸ Each nagios target should have at least one service attribute. A service is what is reported
back to Nagios as being OK, Warning, or Critical (or, if misconfigured, as Unknown).
Without at least one service, a nagios target has nothing to do!

http://www.nagios.org/
http://www.nagios.org/

MonAMI by example

28

❹ a short name used within the MonAMI configuration for this service.

❺ the name of the service according to Nagios. By convention, this is in capital letters.

❻ Each service should have at least one check attribute associated with it. The checks determine
the current status of a service.

❼ The name of a metric. This is the path within the supplied datatree.

❽ The first value that will result in the service going into Warning state.

❾ The first value that will result in the service going into Critical state.

A service is something that Nagios will monitor on a specific server. In general, services are abstract,
(usually high-level) activity or resources that the server provides. Examples of services include a
MySQL DBMS, Torque resource manager and filesystem space.

Nagios considers each service as being in one of four possible states:

OK the service is behaving normally.

Warning normal behaviour continues but there is an early indicator of a problem. If there is any
impact on available service, it is slight.

Critical normal behaviour is no longer possible. If any service is still available it is heavily
impacted and complete failure is expected soon.

Unknown Nagios does not know the status of this service.

Setting up Nagios
In order for a Nagios host to accept status update messages from MonAMI, it must either run the nsca
daemon (nscad) or configure an inetd-like daemon (e.g., inetd or xinetd) to accept these connections
and run the nscad program indirectly.

The nsca daemon, whether running independently or via an inetd-like daemon, will receive the update
notice and write a command to the Nagios “external commands” socket. For this to work, the socket
must be created by the Nagios daemon and the nsca daemon must have write access to this socket. The
former is controlled by a configuration option (check_external_commands usually found in
nagios.cfg) whilst the latter requires the directory in which the socket is created (as defined in the
command_file option and typically /var/log/nagios/rw/) to have the correct permissions.

Each MonAMI check must have a corresponding entry in the Nagios configuration. The following
creates a generic template for use with MonAMI passive updates.

define service {
 name monami-service
 use generic-service
 active_checks_enabled 0
 passive_checks_enabled 1
 register 0
 check_command check_monami_dummy
 notification_interval 240
 notification_period 24x7
 notification_options c,r
 check_period 24x7
 contact_groups monami-admins
 max_check_attempts 3
 normal_check_interval 5
 retry_check_interval 1
}

Despite the service being purely passive, a valid check_command setting is still needed. We use the
command check_monami_dummy, which is a simple command that always returns True:

define command {

MonAMI by example

29

 command_name check_monami_dummy
 command_line /bin/true
}

The final step is define the individual services that are to be monitored. The following Nagios config-
uration defines the two filesystem services defined above.

define service {
 use monami-service
 host_name svr017
 service_description ROOT_FILESYSTEM
}

define service {
 use monami-service
 host_name svr017
 service_description HOME_FILESYSTEM
}

Saying who you are

By default, nagios targets will use the local machine's fully-qualified domain name (FQDN) as the hostname.
However, Nagios allows the configuration to specify the shorter hostname. In the above example, the hostname
(svr017) is used instead of the longer FQDN (svr017.gla.scotgrid.ac.uk).

The localhost attribute allows you to configure what the MonAMI nagios target specifies as its identity. To correctly
identify itself, the target would need localhost = svr017 within its nagios stanza.

Adjust your Nagios configuration to include the new template and checks and restart your Nagios
service. Nagios is careful about checking the configuration before starting: if you have a mistake in
your configuration file you must correct it before Nagios will start.

If the new services have been correctly configured you will see two new entries in Nagios' “Service
Detail” web-page for the host. These will have the PASV symbol indicating that passive updates are
accepted for this service, allowing MonAMI to send fresh data.

The two services describe above will be in an initial (or Pending) state when Nagios starts. They
will remain in that state until MonAMI first sends data. The following figure shows these services.

Figure 7. Example of passively monitored services before MonAMI has sent
data.

Writing checks
Within MonAMI, each service has one or more checks associated with it. The checks are simple tests;
they determine the status of their corresponding service. For example, the filesystem service might
have checks for available capacity and available inodes for the different partitions, the torque service
might have checks that the torque daemon is contactable, that there aren't too many queued jobs, that
there aren't jobs stuck in wait state and so on.

Numerical checks are written as a metric and two numbers separated by commas. The first number
is when the check should go into Warning state; the second is when it should go into Critical
state. The gradient of these numbers indicates which direction is “getting worse”. If the first number
is greater than the second then the metric is measuring resource exhaustion (e.g., available disk space,
free memory, time spent idle); whereas, if the second number is larger than the first then the metric is

MonAMI by example

30

measuring resource usage (e.g., number of concurrent processes, number of jobs, number of network
connections).

The following service and check attributes monitor available capacity for non-root users.

 service = hfs : HOME_FILESYSTEM
 check = hfs : home-fs.capacity.available, 10, 0.5

Consider a scenario where a user is downloading data, filling the /home partition. If the avail-
able capacity (i.e., home-fs.capacity.available) is 20 MiB, then HOME_FILESYSTEM
is in state OK. If, when next measured, the available capacity has dropped to 10.01 MiB
then HOME_FILESYSTEM is still OK. Once the measured value has dropped to 10 MiB,
HOME_FILESYSTEM will be in Warning state. As the parition becomes further filled, it will stay
in Warning state until, finally, the value drops to 0.5 MiB. At this point HOME_FILESYSTEM is
in Critical state.

If there are multiple check attributes for a service attribute, the service's state is a combination of the
different check states. The rule is simple: the most important state wins. The states, in the order of
increasing importance, are: OK, Unknown, Warning and Critical. So, if all a service's checks
are OK, then the service is OK. If most of the checks are OK but some are Unknown, then the service
is in Unknown state. If there are some checks that are in Warning state but none yet in Critical
state, then the service is in Warning state; but, if at least one check is Critical, then the service
is in Critical state.

In the following example:

 service = hfs : HOME_FILESYSTEM
 check = hfs : home-fs.capacity.available, 10, 0.5
 check = hfs : home-fs.files.available, 400, 100

If the available space drops to 10 MiB or the available files (the available inodes) drops to
400, then HOME_FILESYSTEM is Warning. If the available files drop to 100 or fewer, then
HOME_FILESYSTEM becomes Critical, independent of the available space.

Running the example
As before, run MonAMI with the supplied configuration. Make sure you run MonAMI for at least
one minute. There may be a slight further delay between the NSCA daemon writing the command to
Nagios' socket and Nagios updating its internal state.

Once MonAMI has written data to Nagios, you will see the services' state change from Pending to
one of the four normal states of a service. In the example below, both services are in state OK.

Figure 8. Example of passively monitored services after MonAMI has sent data.

MonAMI by example

31

8. Writing data into MySQL
Sometimes it is desirable to store monitoring data in a permanent and flexible form. This might be for
generating reports in an automated fashion, for conducting ad-hoc trend analysis or just to see whether
your site's current behaviour compares with something similar seen several months ago.

Ganglia, which uses RRDTool for data storage, allows the user to adjust the time-frame, permitting
a historic view. However, the reference point is always the current time. One cannot generate a “last
day” set of graphs for a period three months ago. Within the RRDTool file, aging data looses fidelity.
This is a useful feature of RRDTool data storage, but it means that a graph showing a 24-hour period
six months ago is necessarily less accurate.

To archive monitoring data without compromise an alternative storage mechanism is needed. One
such solution is to store the data within a database and MySQL is a popular choice of database.

This section demonstrates how to configure MonAMI so it stores data within a MySQL database.

Configuration file

As before, copy the following configuration file as /etc/monami.d/example.conf.

##
MonAMI by Example, Section 8
##

Our root filesystem
[filesystem]
 name = root-fs
 location = /
 cache = 2

Our /home filesystem
[filesystem]
 name = home-fs
 location = /home
 cache = 2

Once a minute, record / and /home stats into MySQL database.
[sample]
 read = root-fs, home-fs
 write = mysql
 interval = 1m

Store data in MySQL database
[mysql]

 database❶ = monitoring
 user = monami-writer
 password = somethingSecret

 table❷ = filesystem

 field❸ = root-available❹ : root-fs.capacity.available❺
 field = home-available : home-fs.capacity.available

Some points to note:

❶ The database attribute must be specified when writing to a MySQL database and the corre-
sponding database must already exist within MySQL.

❷ You must specify a table attribute but the table doesn't have to exist.

❸ The field attributes define which metrics are written to the columns.

❹ The name of a table column within the MySQL table.

❺ The path to a metric within supplied datatrees.

MonAMI by example

32

Setting up MySQL
Before running MonAMI, you must create the MySQL user monami-writer and create the mon-
itoring database. If the user or database you intend to use already exist, then you can just reuse the
existing ones. If you are using a user that already exists, make sure it has sufficient privileges to store
the data.

The following SQL will create the monitoring database, create the monami-writer user and au-
thorise this user to create tables within the database and to append data to those tables.

CREATE USER 'monami-writer' IDENTIFIED BY 'somethingSecret';
CREATE DATABASE monitoring;
GRANT CREATE,INSERT ON monitoring.* TO 'monami-writer';

Before appending new data, the MonAMI mysql plugin will check the table exists. If it doesn't the
plugin will try to create the table.

The created table will be base on the datatree the mysql target receives: each field attribute will
have a corresponding column in the created table and the storage type will be based on the metric. If a
field attribute's metric is missing from the first datatree then MonAMI will create a STRING column
for that metric.

You can create the table manually; the procedure is described in the MonAMI User Manual. If the
table is created manually, then the MonAMI writer account can be granted less privileges; however,
the increase in security is limited and manually creating the tables is a hassle, so it is easier to let
MonAMI create the tables.

Running the example
Run MonAMI in the usual fashion (/usr/bin/monamid -fv) for at least one minute. During that
minute, if the mysql target creates the storage table, it will display a message. So, the first time you
run the plugin, you will see an extra line:

Starting up...
mysql> table filesystem doesn't exist, creating it...

As data is added to the database the row count will increase. The following shows a MySQL interactive
session where the number of entries in the filesystem table is counted:

mysql> SELECT COUNT(*) from monitoring.filesystem\G
*************************** 1. row ***************************
COUNT(*): 20
1 row in set (0.00 sec)

mysql>

The same SQL can be executed from the command-line. For example:

paul@donachain:~$ mysql --skip-column-names -se \
> 'SELECT COUNT(*) FROM monitoring.filesystem;'
22
paul@donachain:~$

You may need to specify which MySQL user to use and (usually) request that mysql client prompts
you for a password:

mysql -u user [-p] --skip-column-names -se SQL-query

MonAMI by example

33

Using the stored data
Once the monitoring data is in the MySQL database, it can be used as any other data stored in a
database. This greatly increases the opportunity with which you can conduct post-analysis of the mon-
itoring data.

Perhaps the quickest way of analysing the available data is to write SQL queries. However, this requires
knowledge of SQL before one can write custom queries and other methods may be easier.

Handling awkward column names

The above example has column names of root-available and home-available. Because these names include the
hyphen character (-), they must be quoted by placing these words inside back-ticks (e.g. `root-available`)
when used in SQL queries. The same is true if the column name is a MySQL reserved word, such as SELECT
and LIKE.

Another option is to build dynamic web pages that display information from the database. The PHP
language includes support for querying a MySQL database. It also includes support for building cus-
tom graphics through the GD library. Using these tools, it is relatively easy to build custom graphs to
that are dynamic, based on the data stored in MySQL.

For the purpose of this tutorial, we shall use OpenOffice to analyse the monitoring data. There are
two parts: how to obtain live data from the database within a spreadsheet and how to plot and export
graphs using this data. The instructions are written for OpenOffice v2.2; other versions may require
a slightly different process.

Although this tutorial uses OpenOffice, a similar procedure should work for other spreadsheet pack-
ages.

Creating a spreadsheet with monitoring data

This part of the tutorial shows how to link the data gathered in MySQL into an OpenOffice spreadsheet.
This allows for easy post-analysis of the data using normal spreadsheet functions.

1. Start OpenOffice.

2. Create database document file. This document will hold OpenOffice's understanding of the
MySQL database.

a. Select File → New → Database from the menu or click on the New, Database button. The
Database Wizard dialogue box should appear.

b. Select Connect to an existing database, choose the MySQL database type and either
click on the Next>> button or type Alt+N.

c. Select Connect using JDBC (Java Database Connectivity) and either click on the
Next>> button or type Alt+N.

d. Complete the requested information:

Name of the database monitoring

Server URL localhost (or whatever is the MySQL server host-
name). N.B. this field takes a hostname, not a URL.

Port number use the default port.

MySQL JDBC driver class com.mysql.jdbc.Driver

Then either click on the Finish button or type Alt+F.

MonAMI by example

34

e. The Save as dialogue box will appear. Save the resulting OpenDocument Database docu-
ment somewhere as fs-monitoring.odb

3. Create new spreadsheet that has data from the filesystems table imported.

a. Select File → New → Spreadsheet from the menu or click on the New Spreadsheet button.
This will create a new, empty spreadsheet.

b. Select View → Data Sources from the menu or press F4. The Data Sources section should
appear above the spreadsheet. The Data Source Explorer (left pane of the Data Sources
section) should be visable and show a tree structure, with fs-monitoring as one of the
root elements.

c. Expand the fs-monitoring and Tables branches, and select monitoring.filesystems. You
should see data from the filesystems table appear within the right pane of the Data Explorer
section.

d. Click on monitoring.filesystems and drag this over to a cell within the spreadsheet. You
will see the data appear within the spreadsheet, which will be highlighted.

With the data from database is imported, you have the full spectrum of analysis tools available from
the spreadsheet. You can perform statistical or trend analysis.

Updating the imported data

The spreadsheet remembers that the monitoring data was originally taken from a database. You can fresh the import-

ed data by selecting one of the cells within the imported data and selecting Data → Refresh Range from the menu.

Creating graphs from monitoring data

Perhaps the most useful action is to plot a graph using the gathered data. The following procedure
describes how to create a stand-alone image of a graph (as PNG-, EPS- or SVG- formatted file).

1. Start OpenOffice and load the spreadsheet containing the imported data.

2. Create a chart, using imported monitoring data.

a. Make sure the data is highlighted, then either select Insert → Chart... from the menu or click
on the Insert Chart button. Then click and drag out a region on the spreadsheet where you
want the graph to appear. After doing this, the AutoFormat Chart dialogue box will appear.

b. Make sure First row as label and First colum as label options are both selected and either
click on the Next>> button or press Alt+N.

c. Select the Areas option from Choose a chart type and either click on the Next>> button
or press Alt+N.

d. Select the Stacked option from Choose a variant and either click on the Next>> button
or press Alt+N.

e. Enter chart information:

Chart title Storage usage

X axis Available space / MB

Then click on the Create button or press Alt+A.

3. Export chart as a PNG-, EPS- or SVG- formatted file.

MonAMI by example

35

a. With the chart selected, either select Edit → Copy from the menu or press Ctrl+C.

b. Create a new drawing. Either select File → New → Drawing from the menu or click on the
New, Drawing button. This will create a new, empty drawing window.

c. Either select Edit → Paste from the menu or press Ctrl+V.

d. With the chart still highlighted, select File → Export... from the menu.

e. Within File format, select the appropriate format (e.g. PNG, EPS or SVG), enter a filename
in the File name input and either click on Export... or press Alt+E

f. For some file formats some aditional information is required. If so, a dialogue box will
appear requesting information. Complete this information and click on OK.

Watching database disk usage
Over time, the monitoring data stored within the MySQL database will increase. We must take care
to keep the table sizes reasonable. MonAMI can be used to make sure sufficient space is available.

If MonAMI is running on the MySQL server is running, then the filesystem plugin can monitor the
available space. The nagios plugin can provide an alert if the filesystem space becomes too low.

The MonAMI mysql plugin is also a monitoring plugin. In addition to stores monitoring data, it can
query the current status of the MySQL database system and the tables stored within databases. The
plugin does this using the MySQL API, so it can monitor the database remotely.

One of the branches (mysql.Database) contains information on each database.
This information includes information on each of that database's tables. So
the branch mysql.Database.monitoring.Table.filesystems contains informa-
tion on our filesystems table, part of the monitoring database. The metric
...Table.filesystems.Datafile.current records the current space taken up by the
filesystems table in Bytes. Using this, one can monitor the space the table is taking up and trigger an
alert once this table reaches a critical level and intervention is needed.

An example configuration is:

[filesystem]
 name = root-fs
 location = /
 cache = 2

[filesystem]
 name = home-fs
 location = /home
 cache = 2

Once a minute, record / and /home stats into MySQL database and
update Nagios status.
[sample]
 read = root-fs, home-fs
 write = mysql, nagios-fs
 interval = 1m

Every ten minutes, update Nagios status of MySQL storage usage.
[sample]
 read = mysql.Database.monitoring.Table.filesystems.Datafile.current
 write = nagios-mysql
 interval = 10m

MonAMI by example

36

Store data in MySQL database
[mysql]
 database = monitoring
 user = monami-writer
 password = somethingSecret
 table = filesystem
 field = root-available : root-fs.capacity.available
 field = home-available : home-fs.capacity.available

Nagios checks for file-system
[nagios]
 name = nagios-fs
 host = nagios-svr.example.org
 port = 5668
 password = NotSecretEnough

 service = rfs : ROOT_FILESYSTEM
 check = rfs : root-fs.capacity-available, 10, 0.5
 check = rfs : root-fs.files.available, 400, 100

 service = hfs : HOME_FILESYSTEM
 check = rfs : home-fs.capacity-available, 100, 10
 check = rfs : home-fs.files.available, 400, 100

Nagios checks for MySQL
[nagios]
 name = nagios-mysql
 host = nagios-svr.example.org
 port = 5668
 password = NotSecretEnough

 service = ms : MYSQL_SPACE
 # Warn: 20 MiB, Crit: 1 GiB
 check = ms : mysql.Database.monitoring.Table.filesystems.Datafile.current,\
 20971520, 1073741824

	MonAMI by example
	Table of Contents
	1. Introduction
	2. Simple periodic monitoring
	3. Selecting and merging available data
	4. Caching and named samples
	5. On-demand monitoring
	6. Plotting data with Ganglia
	7. Using Nagios to trigger alerts
	8. Writing data into MySQL

