
MonAMI v0.10 User Guide
Paul Millar

MonAMI v0.10 User Guide
Paul Millar

iv

Table of Contents
1. Introduction .. 1

1.1. MonAMI architecture .. 1
1.2. The three monitoring flows ... 2
1.3. Datatrees ... 3

2. Running MonAMI ... 5
2.1. Options for monamid ... 5
2.2. Testing a configuration .. 5
2.3. Running in production environment ... 5
2.4. Running from within the CVS tree ... 6

3. Configuring MonAMI .. 7
3.1. Structure of a configuration file. .. 7
3.2. The [monami] stanza. ... 7
3.3. Features common across plugins .. 10
3.4. Monitoring Plugins .. 14
3.5. Reporting plugins .. 31
3.6. sample ... 57
3.7. Configuring Event-based Monitoring .. 62
3.8. Example configurations .. 63

4. Security ... 66
4.1. General comments ... 66
4.2. Risks arising from running MonAMI .. 67

5. Further Information .. 69

v

List of Figures
1.1. Illustration of MonAMI architecture ... 2
1.2. Illustration of the three data flows ... 3
3.1. Data from DPM displayed within Ganglia. ... 17
3.2. Ganglia graphs showing data from dpm and tcp targets .. 35
3.3. gr_Monitor showing data from apache and mysql targets .. 39
3.4. KSysGuard showing data from the nut plugin ... 42
3.5. Example deployment with key elements of MonALISA shown. 45
3.6. Nagios service status page showing two MonAMI-provided outputs. 47
3.7. Adaptive monitoring increasing sampling interval in response to excessive server load. 60

1

Chapter 1. Introduction
This document describes how to configure and run MonAMI: a universal sensor infrastructure. Fol-
lowing the Unix philosophy, it aims to do a simple job well. That job is to move monitoring informa-
tion from a service into a monitoring system. It does not attempt to store monitoring information or
display (graphically) the data, as other systems exist that already do this. Rather, it aims to interface
well with existing software.

To understand how MonAMI may be configured, a brief introduction to the underlying ideas of Mon-
AMI must be given. This introduction chapter will give an overview of how MonAMI allows mon-
itoring information to flow. This is important as later chapters (which describe specific aspects of
MonAMI) may be confusing without a clear understanding of the “big picture.”

It is worth stressing at this stage that monitoring is a more involved process than merely periodically
collecting data. Without a clear understanding of this, MonAMI may appear superfluous!

In essence, MonAMI allows the collection of information from one or more services. This information
is then sent off, perhaps to some data storage or to be displayed within some monitoring software. This
gathering of information can be triggered by MonAMI internally or from an external agent, depending
on how MonAMI is configured.

1.1. MonAMI architecture
MonAMI has two parts: a core infrastructure and a set of plugins. Plugins do the more immediately
useful activity, such as collecting information and sending the information somewhere. There are
broadly two classes of plugins: monitoring plugins and reporting plugins.

Monitoring plugins can collect information from a specific source; for example, the MySQL plugin
(described in Section 3.4.8, “MySQL”) can collect the current performance of a MySQL database. A
configured monitoring plugin will act as a source of monitoring information.

Reporting plugins store gathered information or send it to some monitoring system. For example, the
filelog plugin (described in Section 3.5.1, “filelog”) will store information as a single line within a
log file, each line starting with the appropriate date/time stamp information. Another example is the
Ganglia plugin (see Section 3.5.3, “Ganglia”), which sends network packets containing the information
so that an existing Ganglia monitoring system can display the information. A configured reporting
plugin will act as a sink of information.

A target is a configured instance of a plugin, one that is monitoring something specific or sending
information to a specific information system. MonAMI can be configured so it has many MySQL
targets, each monitoring target monitoring a different MySQL database server. Another example is
when the filelog plugin is used to log data to different files. Although there is only ever one filelog
plugin, there are many filelog targets, one per file.

MonAMI-core provides the infrastructure that allows gathered information (provided by monitoring
plugins) to be sent to reporting plugins (which send the information off to where it is needed). Mon-
AMI-core also handles internal bookkeeping and the functionality common between plugins, such as
reading configuration files and caching results.

Introduction

2

Figure 1.1. Illustration of MonAMI architecture

Several useful plugins (both monitoring and reporting) are included with the default distribution. How-
ever, MonAMI aims to be extensible. Writing a new monitoring plugin allows data to be sent to any
of the existing reporting plugins; writing a new reporting plugin allows any of the MonAMI data to
be sent to a new storage or monitoring system. Instructions on how to write new plugins are given in
the developers guide (the file README.developers).

1.2. The three monitoring flows
A monitoring agent (such as MonAMI) is charged with the job of marshalling information from one
or more systems (usually local to the agent) to some other system (often remote). Whether we are
monitoring a database for performance problems, keeping a watchful eye on missing web pages or
plotting a graph to see how many users are logged in over time, all monitoring activity can be under-
stood as consisting of three abstract components: the monitoring target, the monitoring agent and the
information system. In this context, the monitoring agent is MonAMI. The monitoring target might
be a database, webserver or the operating system's current-user information. The information system
might be a log file, web page or some distributed monitoring system, such as Ganglia (Section 3.5.3,
“Ganglia”) or Nagios (Section 3.5.9, “Nagios”).

Unlike mechanical monitoring systems (see, for example, the Watt governor), computers work in dis-
crete units of time. In a multitasking operating system any monitoring activity must be triggered by
something outside the monitoring system. From the three components, we can describe three moni-
toring flows based on which component triggered the monitoring activity. If the information system
triggered the monitoring activity, the monitoring is on-demand; monitoring that is triggered within
the agent (i.e. triggered internally within MonAMI) is internally-triggered; if the service triggered the
monitoring, due to some service-related activity, the monitoring is event-based.

Introduction

3

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

18

5

11

13

11

9

2

9

7

0

18

12

17

15

4

2

6

12

6

14

Plot

Time

Ic
e

C
re

am
 C

on
es

Dataset 1

Dataset 2

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

18

5

11

13

11

9

2

9

7

0

18

12

17

15

4

2

6

12

6

14

Plot

Time

Ic
e

C
re

am
 C

on
es

Dataset 1

Dataset 2

Figure 1.2. Illustration of the three data flows

Internally-triggered monitoring is perhaps the most common. An example of internally-triggered mon-
itoring is periodically asking for (and recording somewhere) the current status of some service. We
might ask an Apache web-server the current activity of its threads; we might ask a MySQL database
how many times its query-cache has been useful. These questions can be asked at any time. Typically
the values are queried at regular intervals and the results are plotted on a graph.

With on-demand monitoring, some external agent asks for data. An example of on-demand monitoring
would be a web-page that returned the current status of a database: the information could be gathered
only when queried by a user. The external agent can request information at any time, although in prac-
tice, requests are often periodic. A major benefit of on-demand monitoring flows is that it allows the
monitoring requirements to vary dynamically as greater or lesser volume of information is requested.
A potential problem with on-demand monitoring is with requests overloading the monitoring system.
MonAMI provides some protection against this by allowing the enforcement of a caching policy (see
Section 3.3.2, “The cache attribute”).

The third monitoring flow is event-based monitoring. Events are triggered by the monitoring target
(e.g., the Apache server). The target (such as an Apache server) sends information voluntarily at an
unpredictable time, usually due to something happening externally. Event monitoring flow is most
often used to record that “something” has happened; for example that a web download has completed.

A plugin that supports event-based monitoring flow makes the events available in different chan-
nels. One can subscribe to one or more channels. Information from that channel is then sent to
one or more reporting targets. For example, the Apache web-server monitoring plugin (see Sec-
tion 3.4.2, “Apache”) can produce an event for each attempted HTTP transfer (whether successful or
not) as the access channel, so subscribing to the apache target's access channel would provide
information on all transfers. A subscription can be more more specific: the channel access.4xx
provides information on only those transfers resulting in an error status-code, and subscribing to
access.4xx.404 will report on only missing page (status-code 404) events.

Explicit examples of each of the three event flows are given in Section 3.8, “Example configurations”.
Although the examples rely on an understanding of the monami.conf format (which Chapter 3,
Configuring MonAMI documents in detail), the examples (along with the accompanying notes) should
be fairly obvious.

1.3. Datatrees
When monitoring something (a service, for example) it is rare that the current status is described by
a single metric. Although you might only want a tiny subset of the available information, the current

Introduction

4

status is usually described by a vast slew of data. We want a convenient concept that allows the data
to be grouped together, allowing easy selection of the interesting subsets.

A datatree is a collection of related information. As the name suggests, the metrics are held in a tree
structure, analogous to a filesystem. A datatree has branches (like “directories” or “folders”) each
of which contains measurements (like files) and further branches. In general, branches are generic
concepts and the data underneath the branches are measurements of the generic concept.

A typical datatree is represented below. Here, the Threads branch contains data related to the generic
concept of threads, each of which might be undertaking one of several different activites. The data
underneath the Threads branch (waiting, starting, etc.) are the number of threads in the re-
spective state (“waiting for a connection”, “starting up”, etc..)

Apache
 |
 +--Workers
 | |
 | +--busy: 1
 | |
 | +--idle: 49
 |
 +--Threads
 |
 +--waiting: 49
 |
 +--starting: 0
 |
 +--reading: 0
 |
 +--replying: 1
 |
 +--keep-alive: 0
 |
 +--dns: 0
 |
 +--closing: 0
 |
 +--logging: 0
 |
 +--graceful exit: 0
 |
 +--idle: 0
 |
 +--unused: 0

Each item of data is usually referred to by its full path separated by periods (.), excluding the root
node. For example, the number of Apache threads currently replying with requested information is
Threads.replying. In the above example, Threads.replying has a value of 1.

Each metric has multiple elements of metadata. They all have a name (e.g., Threads.replying), a
value (1 for Threads.replying in above example), a type (integer, floating-point number, string,
etc...), a string describing in what units the measurement was taken (with numerical data and where
appropriate) and some additional binary metadata such as whether the information is static, a counter
or reflects current status.

Datatrees can be combined to form larger datatrees; or subtrees can be selected, limiting the informa-
tion delivered. Details of how to do this are given in Section 3.6.1, “The read attribute”.

5

Chapter 2. Running MonAMI
In this section, the various modes of running MonAMI are discussed. In most production environ-
ments, MonAMI runs as a single detached process (a daemon), launched from the system start-up
scripts (the init scripts), as described in Section 2.3, “Running in production environment”. Other
modes of running monamid, such as testing a new configuration, are also discussed.

2.1. Options for monamid
The MonAMI application (monamid) accepts only a limited number of options as most of the be-
haviour is controlled by the configuration file (/home/paul/monami-test-install/etc/
monami.conf). The format of this configuration file is described in a later section of this guide
(Chapter 3, Configuring MonAMI).

The following options are available for the monamid application.

monamid [-f] [-h] [-v] [-V] [--pid-file file]

-f or --no-daemon run in the foreground, i.e. do not detach from current terminal. Unless
explicitly configured in monami.conf, logging output will be sent to
stdout or stderr.

-h or --help display a brief synopsis of available options.

-v or --verbose show more of the logging information. MonAMI aims to be a quiet ap-
plication. By default it will only report problems that are from extern re-
sources or that are due to configuration that is inconsistent. With the -v
option specified extra information is reported that, whilst not necessarily
reporting an error, is indicative of potentially abnormal activity. This is
often useful when MonAMI is not behaving as expected.

This option can be repeated to include extra debugging information; infor-
mation useful when tracking down programming problems within Mon-
AMI.

-V or --version display the version of MonAMI and exit.

--pid-file file store the PID of monamid in file, creating file if it does not already
exist.

2.2. Testing a configuration
Without the -f option, the MonAMI application (monamid) will assume it is running in a production
environment and will detach itself from the terminal. The init scripts for starting MonAMI also make
this assumption, and run monamid without the -f option.

When first using MonAMI, or when investigating a new configuration, it is often easier to understand
any problems if the application does not detach from the terminal and continues to display output to
the terminal. When experimenting, it is recommended to run MonAMI with the -f (foreground) and
-v (verbose) command-line options. As with other command-line options these can be combined, so
to test-run MonAMI, one can use the following: /usr/bin/monamid -fv.

2.3. Running in production environment
In normal operation, MonAMI will detach itself and run independently as a background task. Typical-
ly, one would want to run MonAMI automatically when a computer starts up. The de facto method of

Running MonAMI

6

achieving this is with init scripts. MonAMI includes a suitable script, which is stored in the /home/
paul/monami-test-install/etc/init.d directory.

When installing MonAMI (either with the RPM package or manually with "make install") a suitable
"init script" will be installed in the /home/paul/monami-test-install/etc/init.d di-
rectory. Once this is done, a further two steps are needed: to register the new init script with the sys-
tem and "switch on" MonAMI. On RedHat-like machines, this is achieved with the following two
commands:

chkconfig monami on

To manually start or stop MonAMI, one can use the init scripts, with either the start or stop option.
You can either execute the script directly:

/etc/init.d/monami start

or using the "service" command.

service monami start

The complete list of arguments the init script accepts is:

start Unconditionally attempt to start monamid. If monamid is already running, this at-
tempt will fail.

stop Unconditionally stops monamid. If the application is not already running, then this
will (obviously) fail.

reload Signals MonAMI to reload its configuration. This will only happen if monamid
is running: if the application is not running, this will fail. The reload is achieved
without stopping and starting monamid.

restart Unconditionally stop and start MonAMI. If monamid was not running, an error is
reported and the application is started.

condrestart If MonAMI is running, then stop monamid and restart it. If the application is not
running, then no action is taken.

2.4. Running from within the CVS tree
Finally, as an aid to development work, one can run MonAMI from within the CVS tree.

With the configuration, if MonAMI fails to find the configuration file in the configured location (/
home/paul/monami-test-install/etc/monami.conf), it will look for monami.conf
within the current working directory.

For plugins, MonAMI will first look in the configured plugin directory (/home/paul/mona-
mi-test-install/lib/monami). If this directory does not exist, or contains no plugins, then
the plugin directory within the current directory is examined. The src/plugin directory is where
plugins are placed as they are built.

MonAMI will run within CVS provided that the "current working directory" is src and the CVS-
configured MonAMI does not share the same prefix as an installed MonAMI instance. It is recom-
mended not to run an installed MonAMI on a development machine and to use the -f command-line
option when running monamid from the CVS directory tree.

7

Chapter 3. Configuring MonAMI
MonAMI looks for the configuration file monami.conf. It will first look for this file in the /home/
paul/monami-test-install/etc directory. If monami.conf is not found there, the pro-
gram will check the current directory. If the configuration file still cannot be found, MonAMI will
exit with error code 1.

The configuration file can describe four things:

• configuration for MonAMI, independent of specific monitoring,

• which services need monitoring (the monitoring targets) and how to get that information,

• where information should be sent (the reporting targets),

• how data should flow from the monitoring targets to the reporting target.

As will be discussed later, it is possible to split parts of MonAMI configuration into different files.
This allows a set of monitoring definitions to be stated independently of other monitoring activity,
which may prove useful when MonAMI is satisfying multiple groups requiring monitoring of services.

3.1. Structure of a configuration file.
Comments can be included by starting a line with the hash (#) symbol. White space (consisting of
space or tab characters) before the hash symbol is allowed in comment lines.

Each configuration file is split into multiple stanzas (or sections). Each stanza has a section title line
followed by zero or more attribute lines.

A section title is a line containing a word in square brackets ("[mysql]" for example). The case
used for the section title does not matter: "[MySQL]", "[mysql]" and "[mySQL]" can be used
interchangeably.

All lines following a section title line until the next section title line (or the end of the file) must
be either a blank line, a comment line or an attribute line. Attribute lines are keyword-value pairs
separated by an equals symbol ("="), for example:

name = myMonitor

White space at the start of the line, either side of the equals symbol and at the end of the line is ignored.
Other white space, if significant, is preserved.

If a line ends with a back-slash symbol ("\") then that line and the one following it are combined into
a single line. This can be repeated, allowing a single very long line to be broken into several shorter
(and more manageable) lines; each of the shorter lines, except the last one, must end with a back-
slash symbol.

Example configuration files are include in Section 3.8, “Example configurations”.

The following sections describe the different sections that may appear in a configuration file, along
with the valid assignment lines that further refine MonAMI behaviour.

3.2. The [monami] stanza.
One one stanza entitled "monami" is allowed: subsequent monami stanzas will be silently ignored.
The MonAMI section describes how MonAMI-core should run.

Configuring MonAMI

8

3.2.1. Logging Messages from MonAMI
MonAMI provides messages containing information about events that occur during runtime. The des-
tination of these messages is controlled by a set of configuration parameters that all begin with "log".

Each message has a severity; the four severity levels are:

critical no further execution is possible, MonAMI will stop immediately.

error something went wrong. It is possible to continue running but with (potentially) reduced
functionality. Errors might be rectified by altering MonAMI configuration.

info a message that, whilst not indicating that there was an error, is part of a limited com-
mentary that might be useful in deciphering apparently bizarre behaviour.

debug a message that is useful in determining why some internal inconsistency has arisen. The
information provided is tediously verbose and only likely of use when finding problems
within the MonAMI program and plugins.

The destination of messages (and whether certain messages are ignored) can be configured on the
command line, or within the [monami] section of the configuration file.

Normally, a user is only interested in "critical" and "error" messages. If MonAMI is not working
correctly, then examining the messages with "info" severity might provide a clue. Supplying the -v
command-line option tells MonAMI to return info messages.

If MonAMI is running as a normal process (using the -f option), then critical and error messages are
sent to standard error (stderr) and other message severity levels are ignored. If MonAMI is running
verbosely (using the -v option) then info messages are sent to standard output (stdout), if running
more verbosely (with -vv) then the debug messages are also sent to stdout.

If MonAMI is running as a daemon (i.e. without the -f command-line option) then, by default, critical
and error messages are sent to syslog (using the "daemon" facility), info is ignored (unless running with
the verbose option: -v) and debug is ignored (unless running more verbosely: -vv). Any messages
generated before MonAMI has detached itself are either sent to stdout, stderr or ignored.

Other destinations are defined as follows:

An absolute file location (i.e. be-
ginning with "/")

This is treated as a file destination. The message is appended
to the file, creating the file if necessary.

syslog indicates the message should be sent to syslog daemon facility.

ignore indicates the message should be ignored.

stderr sends the message to standard-error output.

stdout sends the message to standard output.

Some examples:

[monami]
 # ignore all but critical errors
 log = ignore
 log_critical = syslog

[monami]
 # store critical and error messages in separate files
 log = ignore
 log_critical = /var/log/monami/critical.log

Configuring MonAMI

9

 log_error = /var/log/monami/error.log

3.2.2. Dropping root privileges
MonAMI needs no special privileges to run. In common with other applications, it is possible that
some bug in MonAMI be exploitable and allow a local (or worse, remote) user to compromise the
local system. To reduce the impact of this, it is common for an application to “drop” their elevated
privileges (if running with any) soon after they start.

There are two options within the configuration file to control this: user and group. The user option
tells MonAMI to switch its user-ID to that of the supplied user and to switch group-ID to the default
group for that user. The group option overrides the user's default group, with MonAMI adopting the
group-ID specified.

In the following example, the [monami] stanza tells MonAMI to drop root privileges and assume
the identity of user monami and group monitors.

[monami]
 user = monami
 group = monitors

3.2.3. Auxiliary configuration file directories
Often, a server may have multiple services running concurrently. Maintaining a monolithic configu-
ration file containing the different monitoring requirements may be difficult as services are added or
removed.

To get around this problem, MonAMI will load all the configuration files that end .conf within
a named directory (/home/paul/monami-test-install/etc/monami.d). If a new ser-
vice has been installed, additional monitoring can be indicated by copying a suitable file into the /
home/paul/monami-test-install/etc/monami.d directory. When the service has been
removed the corresponding file in /home/paul/monami-test-install/etc/monami.d
can be deleted.

Auxiliary configuration directories are specified with the config_dir option. This option can occur
multiple times in a [monami] stanza. For example:

[monami]
 config_dir = /etc/monami.d

3.2.4. Attributes
Summary of possible attributes within the [monami] stanza:

log, string, optional change the default destination for all message severity levels.
This overwrites the built-in default behaviour, but is overwrit-
ten by any severity-specific options.

log_critical, string, optional change the destination for critical messages. This overwrites
any other destination option for critical messages.

log_error, string, optional change the destination for error messages. This overwrites any
other destination option for error messages.

log_info, string, optional change the destination for info messages. This overwrites any
other destination option for info messages.

Configuring MonAMI

10

log_debug, string, optional change the destination for debugging messages. This over-
writes any other destination option for debug messages.

user, string, optional The user-name or user-id of the account MonAMI should use.
By default, MonAMI will also adopt the corresponding group
ID.

group, string, optional The group-name or group-id of the group MonAMI should use.
This will override the group ID corresponding to the user op-
tion.

config_dir, string, optional A directory that contains additional configuration files. Each
file ending .conf is read and processed, but any monami
stanzas are ignored. Its recommended that this directory be on-
ly readable by the user account that MonAMI will run under.

3.3. Features common across plugins
There are some features that are common to each of the plugins. Rather than repeat the same informa-
tion under each plugin's description, the information is presented here.

3.3.1. The name attribute
Each distinct service has a separate stanza within the configuration file, using the plugin name. Con-
sidering the apache monitoring plugin (which monitors an Apache HTTP webserver) as an example,
one can monitor multiple Apache webservers with several separate [apache] stanzas: one for each
monitoring target. To illustrate this, the following configuration describes how to monitor an intranet
web server and an external web server.

[apache]
 name = external-webserver
 host = www.example.org

[apache]
 name = internal-webserver
 host = www.intranet.example.org

Each target must have a unique name. It is possible to specify the name a target will adopt with the
name attribute (as in the above example). If no name attribute is given, the target take the name of
the plugin by default. However, since all names must be unique, only one target can adopt the default
name: all subsequent targets (from this plugin) must have their name specified explicitly using the
name attribute.

Although specifying a name is optional, it is often useful to set a name explicitly (preferably to
something meaningful). Simple configuration files will work fine without explicitly specifying target
names, whilst configuration files describing more complex monitoring requirements will likely fail
unless they have explicitly named targets.

If there is an ambiguity (due to different targets having the same name) MonAMI will attempt to
monitor as much as possible (to “degrade gracefully”) but some loss of functionality is inevitable.

3.3.2. The cache attribute
Acquiring the current status of a service will inevitably take resources (such as CPU time and perhaps
disk space) away from the service. For some services this effort is minimal, for others it is more
substantial. Whatever the burden, there will be some monitoring frequency above which monitoring
will impact strongly on service provision.

Configuring MonAMI

11

To prevent overloading a service, the results from querying a service are stored within MonAMI for
a period. If there is a subsequent request for the current state of the target within that period then the
stored results are used rather than directly querying the underlying service: the results are cached.

The cache retention period is adjustable for each target and can be set with the cache attribute. The
cache attribute value is the time for which data is retained, or (equivalently) the guaranteed minimum
time between successive queries to the underlying service.

The value is specified using the standard time-interval notation: one or more numbers each followed
by a single letter modifier. The modifiers are s, m, h and d for seconds, minutes, hours and days
respectively. If a qualifier is omitted, seconds is assumed. The total cache retention period is the sum
of the time. For example 5m 10s is five minutes and ten seconds and is equivalent to specifying 310.

In the following example configuration file, the MySQL queries are cached for a minute whilst the
Apache queries are cached for 2 seconds:

[apache]
 host = www.example.org
 cache = 2

[mysql]
 host = mysql-serv.example.org
 user = monami
 password = monami-secret
 cache = 1m

If no cache retention period is specified, a default value of one second is used. Since MonAMI operates
at the granularity of one second, there is apparently no effect on individual monitoring activity, yet
we ensure that targets are queried no more often than once a second.

For many services, a one second cache retention time is too short and the cached data should be retained
for longer; yet if the cache retention time is set for too long, transitory behaviour will not be detectable.
A balance must be struck, which (most likely) will need some experimentation.

3.3.3. The map attribute
The map attribute describes how additional information is to be added to an incoming datatree. When
a datatree is sent to a target that has one or more map attributes it is first processed to alter the incoming
datatree. To the target, the additional metrics provided by map attributes are indistinguishable from
those of the original datatree.

The map attribute values take the following form:

map = target metric : source

The value of target metric determines the name of the new metric and where it is to be stored.
Any periods (.) within target metric will be interpreted as a path within the datatree. If the
elements of the path do not exist, they are created as necessary, unless there is already a metric with
the same name as a path element.

The source describes where the information for this new metric is to come from. The two possibil-
ities are string-literals and specials.

String-literals are a string metric that never change: they have a fixed value independent of any mon-
itoring activity. A string-literal starts and ends with a double-quote symbol (") and can have any con-
tent in between. Since MonAMI aims at providing monitoring information, the use of string literals
is discouraged.

A special is something that provides some very basic information about the computer: sufficiently
basic that providing the information via a plugin is unnecessary. A special is represented by its name
contained in angle-brackets (< and >). The following specials are available:

Configuring MonAMI

12

FQDN the Fully Qualified Domain Name of the machine. This is the full DNS name of the computer;
for example, www.example.org.

The follow simple, stand-alone MonAMI configuration illustrates map attributes.

[null]

[sample]
 read = null
 write = snapshot
 interval = 1

[snapshot]
 filename = /tmp/monami-snapshot
 map = tests.string-literal.first : "this is a string-literal"
 map = tests.special.fqdn : <FQDN>
 map = tests.string-literal.second : "this is also a \
 string-literal"

The null plugin (see Section 3.4.9, “null”) produces datatrees with no data. Without the map attributes,
the snapshot would produce an empty file at /tmp/monami-snapshot. The map attributes add
additional metrics to otherwise-empty datatrees. This is reflected in the contents of /tmp/mona-
mi-snapshot.

3.3.4. Estimating future data-gathering delays
The process of gathering monitoring data from a service is not instantaneous. In general, there will
be a delay between MonAMI requesting the data and it receiving that data. The length of this delay
may depend on several factors, but is likely to depend strongly on the software being monitored and
how busy is the server.

Whenever MonAMI receives data, it makes a note of how long this data-gathering took. MonAMI
uses this information to maintain an estimate for the time needed for the next request for data from
this monitoring target.

This estimate is available to all plugins, but currently only two use it: ganglia and sample. The ganglia
plugin passes this information on to Ganglia as the dmax value (see Section 3.5.3, “dmax”) and the
sample plugin uses this information to achieve adaptive monitoring (see Section 3.6.4, “Adaptive
monitoring”).

When maintaining an estimate of the next data-gathering delay, MonAMI takes a somewhat pes-
simistic view. It assumes that data-gathering will take as long as the longest observed delay, unless
there is strong evidence that the situation has improved. If gathering data took longer than the current
estimate, the estimate is increased correspondingly. If a service becomes sufficiently loaded (e.g., due
to increase user activity) so that the observed data-gathering delay increases, MonAMI will adjust its
estimate to match.

If data-gathering takes less time than the current estimated value, the current estimate is not automat-
ically decreased. Instead, MonAMI waits to see if the lower value is reliable, and that the delay has
stabilised at the lower value. Once it is reasonably sure of this, MonAMI will reduce its estimate for
future data-gathering delays.

To determine when the delay has stabilised, MonAMI keeps a history of previous data-gathering delay
values. The history is stored as several discrete intervals, each with the same minimum duration. By
default, there are ten history intervals each with a one minute minimum duration, giving MonAMI a
view of recent history going back at least ten minutes.

Each interval has only one associated value: the maximum observed delay during that interval. At all
times, there is an interval called the current interval. Only the current interval is updated, the other
intervals provide historical context. As data is gathered the maximum observed delay for the current
interval is updated.

Configuring MonAMI

13

When the current interval has existed for more than the minimum duration (one minute, by default),
all the intervals moved: the current history interval becomes the first non-current history interval, what
was the first non-current interval becomes the second, and so on. The information in the last history
interval is dropped and a new current interval is created. Future data-gathering delays are recorded in
this new current interval until the minimum interval has elapsed and the intervals moved again.

MonAMI takes two statistical measures of the history intervals: the maximum value and the average
absolute deviation (or average deviation for short). The maximum value is the proposed new value
for the estimated delay, if it is lower, and the absolute deviation is used to determine if the change
is significant.

Broadly speaking, the average deviation describes how settled the data stored in the historic intervals
are over the recent history: a low number implies data-taking delays are more predictable, a high
number indicates they are less predicable. MonAMI only reduces the estimate for future delays if the
difference (between current estimate value and the maximum over all historic intervals) is significant.
It is significant if the ratio between the proposed drop in delay and the average deviation exceeds a
certain threshold value.

In summary, to reduce the estimate of future delays, the observed delay must be persistently low over
the recorded history (minimum of 10 minutes, by default). If the delay is temporarily low, is decreasing
over time or fluctuates, the estimate is not reduced.

There are two attributes that affect how MonAMI determines its estimate. The default values should
be sufficient under most circumstances. Moreover, there are separate attributes for adjusting the be-
haviour both of adaptive monitoring (see Section 3.6.5, “Sample attributes”), and the dmax value of
Ganglia (see Section 3.5.3, “Attributes”). Adjusting these attributes may be more appropriate.

Attributes

md_intervals integer, optional the number of historic intervals to consider. The default is 10
and the value must be between 2 and 30. Increased number of
intervals results in more stringent requirement needed before
the estimate is reduced. It also increases the accuracy of the
average deviation measurements.

Having a small number of intervals (less then 5, say) is not
recommended as the statistics becomes less reliable.

A large number of intervals gives more reliable statistical re-
sults, but the system will take longer to react (to reduce the
delay estimate) to changing situations. Perhaps this is most
noticeable if there is a single data-gathering delay that is un-
usually long. If this happens, MonAMI will take at least the
md_intervals times the minimum delay to reduce the delay es-
timate.

md_duration integer, optional The minimum duration, in seconds, for an interval. The default
is 60 seconds and the value must be between 1 second and 1200
seconds (20 minutes).

Each interval must have at least one data point: an observa-
tion of the data-gathering delay. To ensure this, the value of
md_duration is implemented as a minimum duration and, in
practise, the intervals can be longer. For example, with the de-
fault configuration (md_duration of one minute, md_intervals
of 10) if only a single monitoring flow is established that gath-
ers data from a monitoring target every 90 seconds, each inter-
val will have a 90 second duration and complete history will
be 15 minute.

Configuring MonAMI

14

3.4. Monitoring Plugins
This section describes the different services that can be monitored (for example, a MySQL database
or an Apache webserver). It gives brief introductions to which services the plugins can monitor and
how they can be configured. Wherever possible, sensible defaults are available so often little or no
configuration is required for common deployment scenarios.

The available monitoring plugins depend on which plugins have been built and installed. If you have
received this document as part of a binary distribution, it is possible that the distribution does not
include all the plugins described here. It might also contain other plugins provided independently from
the main MonAMI release.

3.4.1. AMGA
AMGA (ARDA Metadata Catalogue Project) is a metadata server provided by the ARDA/EGEE
project as part of their gLite software releases. It provides additional metadata functionality by wrap-
ping an underlying database storage. More information about AMGA is available from the AMGA
project page [http://project-arda-dev.web.cern.ch/project-arda-dev/metadata/].

The amga monitoring plugin will monitor the server's database connection usage and the number of
incoming connections. For both, the current value and configured maximum permitted are monitored.

Attributes

host string, optional the host on which the AMGA server is running. The default value
is localhost.

port integer, optional the port on which the AMGA server listens. The default value is
8822.

3.4.2. Apache
The Apache HTTP (or web) server is perhaps the most well known project from the Apache Software
Foundation. Since April 1996, the Netcraft web survey has shown it to be the most popular on the
Internet. More details can be found at the Apache home page [http://httpd.apache.org/].

The apache plugin monitors the current status of an Apache HTTP server. It can also provide event-
based monitoring, based on various log files.

The Apache server monitoring is achieved by downloading the server-status page (provided by the
mod_status Apache plugin) and parsing the output. Usually, this option is available within the Apache
configuration, but commented-out by default (depending on the distribution). The location of the
Apache configuration is Apache-version and OS specific, but is usually found in either the /etc/
apache, /etc/apache2 or /etc/httpd directory. To enable the server-status page, uncomment
the section or add lines within the apache configuration that look like:

<Location /server-status>
 SetHandler server-status
 Order deny,allow
 Deny from all
 Allow from .example.com
</Location>

Here .example.com is an illustration of how to limit access to this page. You should change this
to either your DNS domain or explicitly to the machine on which you are to run MonAMI.

There is an ExtendedStatus option that configures Apache to include some additional information.
This is controlled within the Apache configuration by lines similar to:

http://project-arda-dev.web.cern.ch/project-arda-dev/metadata/
http://project-arda-dev.web.cern.ch/project-arda-dev/metadata/
http://project-arda-dev.web.cern.ch/project-arda-dev/metadata/
http://httpd.apache.org/
http://httpd.apache.org/

Configuring MonAMI

15

<IfModule mod_status.c>
 ExtendedStatus On
</IfModule>

Switching on the extended status should not greatly affect the server's load and provides some addi-
tional information. MonAMI can understand this extra information, so it is recommended to switch
on this ExtendedStatus option.

Event-based monitoring

Event-based monitoring is made available by watching log files. Any time the Apache server writes
to a watched log file, an event is generated. The plugin supports multiple event channels, allowing
support for multi-homed servers that log events to different log files.

Event channels are specified by log attributes. This can be repeated to configure multiple event chan-
nels. Each log attribute has a corresponding value like:

name:path[type]

where:

name is an arbitrary name given to this channel. It cannot have a colon (:) and should not have a
dot (.) but most names are valid.

path is the path to the file. Log rotations (where a log file is archived and a new one created) are
supported.

type is either combined, or error.

The following example configures the access channel to read the log file /var/log/apache2/
access.log, which is in the Apache standard “combined” format.

[apache]
 log = access: /var/log/apache2/access.log [combined]

Attributes

host string, optional the hostname for webserver to monitor. The default value is
localhost.

port integer, optional the port on which the webserver listens. The default value is 80

log string, zero or more specifies an event monitoring channel. Each log attribute has
a value like: name : path [type]

3.4.3. dCache
dCache (see dCache home page [http://www.dcache.org]) is a system jointly developed by Deutsches
Elektronen-Synchrotron (DESY) and Fermilab that aims to provide a mechanism for storing and re-
trieving huge amounts of data among a large number of heterogeneous server nodes, which can be
of varying architectures (x86, ia32, ia64). It provides a single namespace view of all of the files that
it manages and allows access to these files using a variety of protocols, including SRM, GridFTP,
dCap and xroot. By connecting dCache to a tape storage backend, it becomes a hierarchical storage
manager (HSM).

Authentication

The dCache monitoring plugin works by connecting to the underlying PostGreSQL database that
dCache uses to store the current system state. To achieve this, MonAMI must have the credentials (a
username and password) to log into the database and perform read queries.

http://www.dcache.org
http://www.dcache.org

Configuring MonAMI

16

If you do not already have a read-only account, you will need to create such an account. It is strongly
recommended not to use an account with any write privileges as the password will be stored plain-text
within the MonAMI configuration file (see Section 4.2.2, “Passwords being stored insecurely”).

To configure PostGreSQL, SQL commands need to be sent to the database server. To achieve this,
you will need to use the psql command, connecting to the dcache database. On many systems you
must log in as the database user “postgres”, which often has no password when connecting from the
same machine on which database server is running. A suitable command is:

psql -U postgres -d dcache

The following SQL commands will create an account monami with password monami-secret
that has read-only access to the tables that MonAMI will read.

Important

Please ensure you change the example password (monami-secret).

CREATE USER monami;
ALTER USER monami PASSWORD 'monami-secret';

GRANT SELECT ON TABLE copyfilerequests_b TO monami;
GRANT SELECT ON TABLE getfilerequests_b TO monami;
GRANT SELECT ON TABLE putfilerequests_b TO monami;

If you intend to monitor the database remotely, you may need to add an extra entry in PostGreSQL's
remote access file: pg_hba.conf. With some distribution, this file is located in the directory /var/
lib/pgsql/data.

Currently, the information gathered is limited to the rate of SRM GET, PUT and COPY re-
quests received. This information is gathered from the copyfilerequests_b, getfilerequests_b and
putfilerequests_b tables. Future versions of MonAMI may read other tables, so requiring additional
GRANT statements.

Attributes

host string, optional the host on which the PostGreSQL database is running. The
default is localhost.

ipaddr string, optional the IP address of the host on which the database is running. This
is useful when the host is on multiple IP subnets and a specific
one must be used. The default is to look up the IP address from
the host.

port integer, optional the TCP port to use when connecting to the database. The de-
fault is port 5432 (the standard PostGreSQL port).

user string, optional the username to use when connecting to the database. The de-
fault is the username of the system account MonAMI is running
under. When running as a daemon from a standard RPM-based
installation, the default user will be monami.

password string, optional the password to use when authenticating. The default is to at-
tempt password-less login to the database.

3.4.4. Disk Pool Manager (DPM)
Disk Pool Manager (DPM) is a service that implements the SRM protocol (mainly for remote access)
and rfio protocol (for site-local access). It is an easy-to-deploy solution that can support multiple disk
servers but has no support for tape/mass-storage systems. More information on DPM can be found at
the DPM home page [https://twiki.cern.ch/twiki/bin/view/LCG/DataManagementDocumentation].

https://twiki.cern.ch/twiki/bin/view/LCG/DataManagementDocumentation
https://twiki.cern.ch/twiki/bin/view/LCG/DataManagementDocumentation

Configuring MonAMI

17

Figure 3.1. Data from DPM displayed within Ganglia.

The dpm plugin connects to the MySQL server DPM uses. By querying this database, information is
extracted such as the status of the filesystems and the used and available space. The space statistics
are available as a summary, and broken down for each group, and for each filesystem. The daemon
activity on the head node can also be monitored.

Authentication

This plugin requires read-only privileges for the database DPM uses. The following set of SQL state-
ments creates login credentials with username of monamiuser and password of monamipass suit-
able for local access:

GRANT SELECT ON cns_db.* TO 'monamiuser'@'localhost'
 IDENTIFIED BY 'monamipass';
GRANT SELECT ON dpm_db.* TO 'monamiuser'@'localhost'
 IDENTIFIED BY 'monamipass';

If MonAMI is to monitor the MySQL database remotely, the following SQL can be used to create
login credentials

GRANT SELECT ON cns_db.* TO 'monamiuser'@'%'
 IDENTIFIED BY 'monamipass';
GRANT SELECT ON dpm_db.* TO 'monamiuser'@'%'
 IDENTIFIED BY 'monamipass';

If local and remote access to the MonAMI database is needed all four above SQL commands should
be combined.

Attributes

host string, optional the host on which the MySQL server is running. Default is lo-
calhost.

user string, required the username with which to log into the server.

password string, required the password with which to log into the server.

3.4.5. Filesystem
The filesystem plugin monitors generic (i.e., non-filesystem specific) features of a mounted filesys-
tem. It reports both capacity and “file” statistics. The “file” statistics correspond to inode usage for
filesystems that use inodes (such as ext2).

Configuring MonAMI

18

Note

With both reported resources (blocks and files), there are similar-sounding metrics: “free” and “available”. “free”
refers to total resource potentially available and “available” refers to the resource available to general (non-root)
users.

The difference between the two comes about because it is common to reserve some capacity for the root user.
This allows core system services to continue when a partition is full: normal users cannot create files but root (and
processes running as root) can.

Attributes

location string, required the absolute path to any file on the filesystem.

3.4.6. GridFTP

The Globus Alliance distribute a modified version of the WU-FTP client that has been patched to
allow GSI-based authentication and multiple streams. This is often referred to as “GridFTP”.

Various grid components use GridFTP as an underlying transfer mechanism. Often, these have the
same log-file format for recording transfers, so parsing this log-file is a common requirement.

The gridftp plugin monitors GridFTP log files, providing an event for each transfer. This is under the
transfers channel.

Attributes

filename string, required the absolute path to the GridFTP log file.

3.4.7. Maui

On their website, Cluster Resources describe Maui as “an advanced batch scheduler with a large feature
set well suited for high performance computing (HPC) platforms”. Within a cluster it is used to decide
which job (of many that are available) should be run next. Maui provides sophisticated scheduling fea-
tures such as advanced fair-share definitions and “allocation bank”. More details are available within
the Maui homepage [http://www.clusterresources.com/pages/products/maui-cluster-scheduler.php].

Access control

The MonAMI maui plugin will need sufficient access rights to query the Maui server. If MonAMI is
running on the same machine as the Maui server, (most likely) no additional host will be needed. If
MonAMI is running on a remote machine, then access-right must be granted for that machine. Append
the remote host's hostname to the space-separated ADMINHOST list.

The plugin will also need to use a valid username. By default it will use the name of the user it is
running as (monami), but the plugin can use an alternative username (see the user attribute). To add
an additional username, append the username to the space-separated ADMIN3 list.

The following example configuration shows how to configure Maui to allow monitoring from host
monami.example.org as user monami.

SERVERHOST maui-server.example.org
ADMIN1 root
ADMIN3 monami
ADMINHOST maui-server.example.org monami.example.org
RMCFG[base] TYPE=PBS
SERVERPORT 40559
SERVERMODE NORMAL

http://www.clusterresources.com/pages/products/maui-cluster-scheduler.php
http://www.clusterresources.com/pages/products/maui-cluster-scheduler.php

Configuring MonAMI

19

Password

The Maui authenticates by the client and server keeping a shared secret: a password. Currently this
password must be integer number. Unfortunately, the password is decided as part of the Maui build
process. If one is not explicitly specified, a random number is selected as the password. The password
is then embedded within the Maui client programs and used when they communicate with the Maui
server. Currently, it is not possible to configure the Maui server to use an alternative password without
rebuilding the Maui client and servers.

To communicate with the Maui server the maui plugin must know the password. Unfortunately, as
the password is only stored within the executables, it is difficult to discover. The maui plugin has
heuristics that allow it to scan a Maui client program and, in most cases, discover the password. This
requires a Maui client program to be present on whichever computer MonAMI is running. If the Maui
client is in a non-standard location, its absolute path can be specified with the exec attribute.

If the password is known (for example, its value was specified when compiling Maui) then it can
be specified using the password attribute. Specifying the password attribute will stop MonAMI
from scanning Maui client programs.

Once the password is known, it can be stored in the MonAMI configuration using the password
attribute. This removes the need for a Maui client program. However, should the Maui binaries change
(for example, upgrading an installed Maui package), it is likely that the password will also change.
This would stop the MonAMI plugin from working until the new password was supplied.

The recommended deployment strategy is to install MonAMI on the Maui server and allow the maui
plugin to scan the Maui client programs for the required password.

Time synchronisation

When communicating between the maui and Maui server, both parties want to know that the messages
are really from the other party. The shared-secret is one part of this process, another is to check the
time within the message. This is to prevent a malicious third-party from sending messages that have
already been sent: a “replay attack”.

To prevent these replay attacks, the clocks on the Maui server and the server MonAMI is running must
agree. If both machines are well configured, their clocks will agree with ~10 millisecond difference.
Since the network may introduce a slight delay, some tolerance is needed.

The maui plugin requires an agreement of one second by default. This should be easy to satisfied with
modern networks. If, for whatever reason, this is not possible the tolerance can be make more lax by
specifying the max_time_delta attribute.

Note

Should there be a systematic error between the clocks on two servers, effort should be made in synchronosing those
clocks. Increasing the max_time_delta makes MonAMI more vulnerable to replay attacks.

Attributes

host string, optional the hostname of the Maui server. If not specified, localhost
will be used.

port integer, optional the TCP port to which the plugin with connect. If not specified,
the default value is 40559.

user string, optional the user name to present to the Maui server when communicat-
ing. The default value is the name of the account under which
MonAMI is running.

Configuring MonAMI

20

max_time_delta integer, op-
tional

the maximum allowed time difference, in seconds, between the
server and client. The default value is one second.

password integer, optional the shared-secret between this plugin and the Maui server. The
default policy is to attempt to discover the password automati-
cally. Specifying the password will prevent attempts at discov-
ering it automatically.

timeout string, optional the time MonAMI should wait for a reply. The string is in time-
interval format (e.g., “5m 10s” is five minutes and ten sec-
onds; “310” would be equivalent). The default behaviour is to
wait indefinitely.

exec string, optional the absolute path to the mclient (or similar) Maui client pro-
gram. If the plugin was unsuccessful scanning the program giv-
en by exec it will also try standard locations.

3.4.8. MySQL
This plugin monitors the performance of a MySQL database. MySQL is a commonly used Free
(GPLed) database. The parent company (MySQL AB) describe it as “the world's most popular open
source database”. For more information, please see the MySQL home page [http://www.mysql.com/]

The statistics monitored are taken from the status variables. They are acquired by executing the
MySQL SQL SHOW STATUS;. The raw variables are described in the MySQL manual, section 5.2.5:
Status Variables [http://dev.mysql.com/doc/refman/5.0/en/server-status-variables.html].

Note

The metrics names provided by MySQL are in a flat namespace. These names are not used by MonAMI; instead, the
metrics are mapped into a tree structure, allowing more easy navigation of, and section from, the available metrics.

Privileges

To function, this plugin requires an account to access the database. Please note: this database account
requires no database access privileges, only that the username and password will allow MonAMI to
connect to the MySQL database. For security considerations, you should not employ login credentials
used elsewhere (and never root or similar power-user). The following is a suitable SQL statement
for creating a username and password of monami and monamipass.

CREATE USER 'monami'@'localhost' IDENTIFIED BY "monamipass";

Sharing login credentials is not recommended. If you decide to share credentials make sure the Mon-
AMI configuration file is readable only by the monami user (see Section 3.2.2, “Dropping root
privileges”).

Note

In addition to monitoring a MySQL database, the mysql plugin can also store information MonAMI has gathered
within MySQL. This is described in Section 3.5.8, “MySQL”.

Attributes

user string, required the username with which to log into the server.

password string, required the password with which to log into the server

host string, optional the host on which the MySQL server is running. If no host is
specified, the default localhost is used.

http://www.mysql.com/
http://www.mysql.com/
http://dev.mysql.com/doc/refman/5.0/en/server-status-variables.html
http://dev.mysql.com/doc/refman/5.0/en/server-status-variables.html

Configuring MonAMI

21

3.4.9. null
The null plugin is perhaps the simplest to understand. As a monitoring plugin, it providing an empty
datatree when requested for data. The main use for null as a monitoring target is to demonstrating
aspects of MonAMI without the distraction of real-life effects from other monitoring plugins.

The null plugin will supply an empty datatree. In conjunction with a reporting plugin (e.g., the snap-
shot), this can be used to demonstrate the map attribute for adding static content. This attribute is
described in Section 3.3.3, “The map attribute”.

Delays

Another use for a null target is to investigate the effect of a service taking a variable length of time
to respond with monitoring data. This is emulated by specifying a delay file. If the delayfile
attribute is set, then the corresponding file is read. It should contain a single integer number. This
number dictates how long (in seconds) a null target should wait when requested for data. The file
can be changed at any time and the change will affect the next time the null target is read from.
This is particularly useful for demonstrating how MonAMI estimates future delays (see Section 3.3.4,
“Estimating future data-gathering delays”) and undertakes adaptive monitoring (see Section 3.6.4,
“Adaptive monitoring”).

The following example will demonstrate this usage:

[null]
 delayfile=/tmp/monami-delay

[sample]
 read = null
 write = null
 interval = 1s

Then, by changing the number stored in /tmp/monami-delay, the delay can be adjusted dynam-
ically. To set the delay to three seconds, do:

$ echo 3 > /tmp/monami-delay

To remove the delay, simply set the delay to zero:

$ echo 0 > /tmp/monami-delay

Attributes

delayfile string, optional the filename of the delay file, the contents of which is parsed as
an integer number. This number is the number of seconds the
null target will delay when replying with an empty datatree.

3.4.10. NUT
Network UPS Tools (NUT) provides a standard method through which an Uninterruptable Power
Supply (UPS) can be monitored. Part of this framework allows for signalling, so that machines can
undergo a controlled shutdown in the event of a power failure. Further details of NUT are available
from the NUT home page [http://www.networkupstools.org/].

The MonAMI nut plugin connects to the NUT data aggregator daemon (upsd) and queries the status
of all known, attached UPS devices. The ups.conf file must be configured for available hardware
and the startup scripts must be configured to start the required UPS-specific monitoring daemons.

http://www.networkupstools.org/
http://www.networkupstools.org/

Configuring MonAMI

22

By default, localhost will be allowed access to the upsd daemon but access for external hosts must
be added explicitly in the upsd.conf file. See the NUT documentation on how best to achieve this.

Attributes

host string, optional the host on which the NUT upsd daemon is running. The default
value is localhost.

port integer, optional the port on which the NUT upsd daemon listens. The default val-
ue is 3493.

3.4.11. Process
The process plugin monitors Unix processes. It can count the number of processes that match search
criteria and can give detailed information on a specific process.

The information process gives should not be confused with any process, memory or thread statistics
other monitoring plugins provide. Some services report their current thread, process or memory usage,
which may duplicate some of the information this plugin reports (see, for example, Section 3.4.2,
“Apache” and Section 3.4.8, “MySQL”). However, process reports information from the kernel and
should work with any application.

The process plugin has two main types of monitors: counting processes and detailed information about
a single process. A single process target can be configured to do any number of either type of moni-
toring and the results are combined in the resulting datatree.

Counting processes

To count the number of processes, a count attribute must be specified. In its simplest form, the
count attribute value is simply the name of the process to count. The following example reports the
number of imapd processes that are currently in existance.

[process]
 count = imapd

The format of the count attribute allows for more sophisticated queries of form: reported name
: proc name [cond1, cond2, ...]

All of the parts are optional: the part upto and including the colon (reported name :), the part
after the colon but before the square brackets (proc name) and the part in square brackets ([cond1,
cond2, ...]) can be omitted, but at least one of the first two parts must be specified. The examples
below may help clarify this!

To be included in the count, a process' name must match the proc name (if specified). The statistics
will be reported as reported name. If no reporting name is specified, then proc name will be
used.

The part in square brackets, if present, specifies some additional constraints. The comma-separated list
of key, value pairs define additional predicates; for example, [uid=root, state=R] means only
processes that are running as root and are in state running will be counted. The valid conditions are:

uid = uid to be considered, the process must be running with a user ID of uid. The
value may be the numerical uid or the username.

gid = gid the process must be running with a group ID of gid. The value may be
the numerical gid or the group name.

state = statelist the process must have one of the states listed in statelist. Each ac-
ceptable process state is represented by a single capital letter and they are
concatinated together. Valid process states letters are:

Configuring MonAMI

23

R process is running (or ready to be run),

S sleeping, awaiting some external event,

D in uninterruptable sleep (typically waiting for disk IO to complete),

T stopped (due to being traced),

W paging,

X dead,

Z defunct (or "zombie" state).

The following example illustrates count used to count the number of processes. The different at-
tributes show how the different criteria are represented.

[process]

 count = imapd ❶

 count = io_imapd : imapd [state=D] ❷

 count = all_java : java ❸

 count = tomcat_java : java [uid=tomcat5] ❹

 count = zombies : [state=Z] ❺

 count = tcat_z : java [uid=tomcat4, state=Z] ❻

 count = run_as_root : [uid=0] ❼

❶ Count the number of imapd processes.

❷ Count the number of imapd processes that are in “uninterruptable sleep” state: stopped whilst
waiting for block I/O (e.g. disk I/O).

❸ Count the number of java processes that are running. Store the number as a metric called
all_java.

❹ Count the number of java processes that are running as user tomcat5. Store the number as a
metric called tomcat_java.

❺ Count the total number of zombie processes. Store the number as a metric called zombies.

❻ Count the number of zombie tomcat processes. Store the number as a metric called tcat_z.

❼ Count the number of processes running as root. Store the number as a metric called
run_as_root.

Detailed information

The watch attribute specifies a process to monitor in detail. The process to watch is identified using
the same format as with count statements; however, the expectation is that only a single process
will match the criteria.

If there is more than one process matching the search criteria then one is chosen and that process is
reported. In principle, the selected process might change from one time to the next, which would lead
to confusing results. In practise, the process with the lowest pid is chosen, so is both likely to be the
oldest process and unlikely to change over time. However, this behaviour is not guaranteed.

Much information is gathered with a watch attribute. This information is documented in the stat
and status sections of the proc(5) manual page. Some of the more useful entries are copied below:

pid the process ID the the process being monitored.

ppid the process ID of the parent process.

state a single character, with the same semantics as the different process states listed above.

minflt number of minor memory page faults (no disk swap activity was required).

Configuring MonAMI

24

majflt number of major memory page faults (those requiring disk swap activity).

utime number of jiffies1 of time spent with this process scheduled in user-mode.

stime number of jiffies1 of time spent with this process scheduled in kernel-mode.

threads number of threads in use by this process.

Note

An accurate value is provided by the 2.6-series kernels. Under 2.4-series kernel with LinuxThreads,
heuristics are used to derive a value. This value should be correct under most circumstances, but it
may be confused if multiple instances of the same multi-threaded process is running concurrently.

vsize virtual memory size: total memory used by the process.

rss Resident Set Size: number of pages of physical memory a process is using (less 3 for
administrative bookkeeping).

Attributes

count string, optional either the name of the process(es) to count, or the conditions pro-
cesses must satisfy to be included in the count. This attribute may
be repeated for multiple process counting.

count attributes have the form: reported name :
proc name [cond1, cond2, ...]

watch string, optional either the name of the process to obtain detailed information, or
the conditions a process must satisfy to be watched. This attribute
may be repeated to obtain detailed information about multiple pro-
cesses.

watch attributes have the form: reported name :
proc name [cond1, cond2, ...]

3.4.12. Stocks
The stocks plugin uses one of the web-services provided by XMethods [http://www.xmethods.com/
] to obtain a near real-time quote (delayed by 20 minutes) for one or more stocks on the Unit-
ed States Stock market. Further details of this service are available from the Stocks service
summary page [http://www.xmethods.com/ve2/ViewListing.po?key=uuid:889A05A5-5C03-AD9B-
D456-0E54A527EDEE].

In addition to providing financial information, stocks is a pedagogical example that demonstrates the
use of SOAP within MonAMI.

Caution

The authors of MonAMI expressly disclaim the accuracy, adequacy, or completeness of any data and shall not be
liable for any errors, omissions or other defects in, delays or interruptions in such data, or for any actions taken
in reliance thereon.

Please do not send too many requests. A request every couple of minutes should be sufficient.

Attributes

symbols string, required a comma- (or space-) separated list of ticker symbols to moni-
tor. For example, GOOG is the symbol for Google Inc. and RHT
is the symbol for RedHat Inc.

http://www.xmethods.com/
http://www.xmethods.com/
http://www.xmethods.com/ve2/ViewListing.po?key=uuid:889A05A5-5C03-AD9B-D456-0E54A527EDEE
http://www.xmethods.com/ve2/ViewListing.po?key=uuid:889A05A5-5C03-AD9B-D456-0E54A527EDEE
http://www.xmethods.com/ve2/ViewListing.po?key=uuid:889A05A5-5C03-AD9B-D456-0E54A527EDEE
http://www.xmethods.com/ve2/ViewListing.po?key=uuid:889A05A5-5C03-AD9B-D456-0E54A527EDEE

Configuring MonAMI

25

3.4.13. TCP

The tcp monitoring plugin provides information about the number of TCP sockets in a particular state.
Here, a socket is either a TCP connection to some machine or the ability to receive a particular con-
nection (i.e., that the local machine is “listening” for incoming connections).

A tcp monitoring target takes an arbitrary number of count attributes. The value of a count at-
tributes describes how to report the number of matching sockets and the criteria for including a socket
within that count. These attributes take values like: name [cond1, cond2, ...], where name
is the name used to report the number of matching TCP sockets. The conditions (cond1, cond2, etc.)
are comma-separated keyword-value pairs (e.g., state=ESTABLISHED). A socket must match all
conditions to be included in the count.

The condition keywords may be any of the following:

local_addr The local IP address to which the socket is bound. This may be useful on mul-
ti-homed machines for sockets bound to a single interface.

remote_addr The remote IP address of the socket, if connected.

local_port The port on the local machine. This can be the numerical value or a common name
for the port, as defined in /etc/service.

remote_port The port on the remote machine, if connected. This can be the numerical value or
a common name for the port.

port A socket's local or remote port must match. This can be the numerical value or a
common name for the port.

state The current state of the socket. Each local socket will be in one of a number of states
and changes state during the lifetime of a connection. All the states listed below
are valid and may occur naturally on a working system; however, under normal
circumstances some states are transitory: one would not expect a socket to stay in
a transitory state for long. A large and/or increasing number of sockets in one of
these transitory states might indicate a networking problem somewhere.

The valid states are listed below. For each state, a brief description is given and the
possible subsequent states are listed.

LISTEN A program has indicated it will receive connections from re-
mote sites.

Next: SYN_RECV, SYN_SENT

SYN_SENT Either a program on the local machine is the client and is at-
tempting to connect to remote machine, or the local machine
sends data from a LISTENing socket (less likely).

Next: ESTABLISHED, SYN_RECV or CLOSED

SYN_RECV Either a LISTENing socket has received an incoming request
to establish a connection, or both the local and remote ma-
chines are attempting to connect at the same time (less likely)

Next: ESTABLISHED, FIN_WAIT_1 or CLOSED

ESTABLISHED Data can be sent to/from local and remote site.

Next: FIN_WAIT_1 or CLOSE_WAIT

Configuring MonAMI

26

FIN_WAIT_1 Start of an active close. The application on local machine has
closed the connection. Indication of this has been sent to the
remote machine.

Next: FIN_WAIT_2, CLOSING or TIME_WAIT

FIN_WAIT_2 Remote machine has acknowledged that local application
has closed the connection.

Next: TIME_WAIT

CLOSING Both local and remote applications have closed their connec-
tions “simultaneously”, but remote machine has not yet ac-
knowledged that the local application has closed the local
connection.

Next: TIME_WAIT

TIME_WAIT Local connection is closed and we know the remote site
knows this. We know the remote site's connection is closed,
but we don't know if the remote site know that we know this.
(It is possible that the last ACK packet was lost and, after a
timeout, the remote site will retransmit the final FIN packet.)

To prevent the potential packet loss (of the local machine's
final ACK) from accidentally closing a fresh connection, the
socket will stay in this state for twice MSL timeout (depend-
ing on implementation, a minute or so).

Next: CLOSED

CLOSE_WAIT The start of a passive close. The application on the remote
machine has closed its end of the connection. The local ap-
plication has not yet closed this end of the connection.

Next: LASK_ACK

LASK_ACK Local application has closed its end of the connection. This
has been sent to the remote machine but the remote machine
has not yet acknowledged this.

Next: CLOSED

CLOSED The socket is not in use.

Next: LISTEN or SYN_SENT

CONNECTING A pseudo state. The transitory states when starting a connec-
tion match, specifically either SYN_SENT or SYN_RECV.

DISCONNECT-
ING

A pseudo state. The transitory states when shutting down
a connection match, specifically any of FIN_WAIT_1,
FIN_WAIT_2, CLOSING, TIME_WAIT, CLOSE_WAIT
or LASK_ACK match.

The states ESTABLISHED and LISTEN are long-lived states. It is natural to find sockets that are in
these states for extended periods.

For applications that use “half-closed” connections, the FIN_WAIT_2 and TIME_WAIT states are
less transitory. As the name suggests, half-closed connections allows data to flow in one direction

Configuring MonAMI

27

only. It is achieved by the application that no longer wishes to send data closing their connection (see
FIN_WAIT_1 above), whilst the application wishing to continue sending data does nothing (and so
suffers a passive close). Once the half-closed connection is established, the active close socket (which
can no longer send data) will be in FIN_WAIT_2, whilst the passive close socket (which can still send
data) will be in CLOSE_WAIT.

There are two pseudo states for the normal transitory states: CONNECTING and DISCONNECTING.
They are intended to help catch networking or software problems.

The following example checks whether an application is listening on three well-known port numbers.
This might be used as a check whether services are running as expected.

[tcp]
 name = listening
 count = ssh [local_port=ssh, state=LISTEN]
 count = ftp [port=ftp, state=LISTEN]
 count = mysql [local_port=mysql, state=LISTEN]

The following example records the number of connections to a webserver. The established metric
records the connections where data may flow in either direction. The other two metrics record connec-
tions in the two pseudo states. Normal traffic should not stay long in these pseudo states; connections
that persist in these states may be symptomatic of some problem.

[tcp]
 name = incoming_web_con
 count = established [local_port=80, state=ESTABLISHED]
 count = connecting [local_port=80, state=CONNECTING]
 count = disconnecting [local_port=80, state=DISCONNECTING]

Attributes

count string, optional the name to report for this metric followed by square brackets con-
taining a comma-separated list of conditions a socket must satisfy
to be included in the count. This option may be repeated for mul-
tiple TCP connection counts.

The conditions are keyword-value pairs, separated by =, with
the following valid keywords: local_addr, remote_addr,
local_port, remote_port, port, state.

The state keyword can have one of the following TCP
states: LISTEN, SYN_RECV, SYN_SENT, ESTABLISHED,
CLOSED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT,
CLOSING, TIME_WAIT, LASK_ACK; or one of the following
two pseudo states: CONNECTING, DISCONNECTING.

3.4.14. Tomcat
Apache Tomcat is one of the projects from the Apache Software Foundation. It is a Java-based appli-
cation server (or servlet container) based on Java Servlet and JavaServer Pages technologies. Servlets
and JSP are defined under Sun's Java Community Process. More information about Tomcat can be
found at the Apache Tomcat home page [http://tomcat.apache.org/].

Also under development of the Java Community Process is the Java Monitoring eXtensions (JMX).
JMX provides a standard method of instrumenting servlets and JSPs, allowing remote monitoring and
control of Java applications and servlets.

The tomcat plugin uses the JMX-proxy servlet to monitor (potentially) arbitrary aspects of a Servlet and
JSPs. This provides structured plain-text output from Tomcat's JMX MBean interface. Applications
that require monitoring should connect to that interface for MonAMI to discover their data.

http://tomcat.apache.org/
http://tomcat.apache.org/

Configuring MonAMI

28

To monitor a custom servlet, the required instrumentation within the servlet/JSP must be written.
Currently, there is an additional light-weight conversion needed within MonAMI, adding some extra
information about the monitored data. Sample code exists that monitors aspects of the Tomcat server
itself.

Any tomcat monitoring target will need a username and password that matches a valid account
within the Tomcat server that has the manager role. This is normally configured in the file
$CATALINA_HOME/conf/tomcat-users.xml. Including the following line within this file
creates a new user monami, with password monami-secret and manager role, to Tomcat.

<user username="monami" password="monami-secret" roles="manager"/>

This line should be added within the <tomcat-users> context.

Warning

Be aware that Basic authentication sends the username and password unencrypted over the network. These values
are at risk if packets can be captured. If you are not sure, you should run MonAMI on the same server as Tomcat.

In addition to connecting to Tomcat, you also need to specify which classes of information you wish
to monitor. The following are available: ThreadPool and Connector. To monitor some aspect, you
must specify the object type along with the identifier for that object within the monitoring definition.
For example:

[tomcat]
 name = local-tomcat
 ThreadPool = http-8080
 Connector = 8080

ThreadPool monitors a named thread pool (e.g., http-8080), monitoring the following quantities:

minSpareThreads the minimum number of threads the server will maintain.

currentThreadsBusy the number of threads that are either actively processing a request or
waiting for input.

currentThreadCount total number of threads within this ThreadPool.

maxSpareThreads if the number of spare threads exceeds this value, the excess are deleted.

maxThreads an absolute maximum number of threads.

threadPriority the priority at which the threads run.

The Connector monitors a ConnectorMBean and is identified by which port it listens on. It monitors
the following quantities:

allowTrace Can we trace the output?

clientAuth Did the client authenticate?

compression Is the connection compressed?

disableUploadTimeout Is the upload timeout disabled?

emptySessionPath Is there no session?

enableLookups Are lookups enabled?

tcpNoDelay Is the TCP SO_NODELAY flag set?

useBodyEncodingForURI does the URI contain body information?

Configuring MonAMI

29

secure are the connections secure?

acceptCount number of pending connections this Connector will accept before
rejecting incoming connections.

bufferSize size of the input buffer.

connectionLinger how long the connection lingers, waiting for other connections.

connectionTimeout the timeout for this connection.

connectionUploadTimeout the timeout for uploads.

maxHttpHeaderSize the maximum size for HTTP header.

maxKeepAliveRequests how many keep-alives before the connection is considered dead.

maxPostSize maximum size of the information POSTed.

maxSpareThreads c.f. ThreadPool

maxThreads c.f. ThreadPool

minSpareThreads c.f. ThreadPool

threadPriority c.f. ThreadPool

port the port on which this connector listens.

poxyPort the proxy port associated with this connector.

redirectPort the port to which this connector will redirect.

protocol which protocol the connector uses (e.g., HTTP/1.1)

sslProtocol the SSL protocol the connector uses (e.g., TLS)

scheme which scheme the URI will use (e.g., http, https)

Attributes

The tomcat monitoring target accepts the following options:

host string, optional the hostname of the machine to monitor. The default value is
localhost.

port integer, optional the TCP port on which Tomcat listens. The default value is 8080

jmxpath string, optional the path to the JMX-proxy servlet within the application serv-
er URI namespace. The default path is /manager/jmx-
proxy/

username string, optional the username to use when completing Basic authentication.

password string, optional the password to use when completing Basic authentication.

3.4.15. Torque
The Torque homepage [http://www.clusterresources.com/pages/products/torque-re-
source-manager.php] describes Torque as “an open source resource manager providing control over

http://www.clusterresources.com/pages/products/torque-resource-manager.php
http://www.clusterresources.com/pages/products/torque-resource-manager.php
http://www.clusterresources.com/pages/products/torque-resource-manager.php

Configuring MonAMI

30

batch jobs and distributed compute nodes.” Torque was based on the original PBS/Open-PBS project,
but incorporates many new features. It is now a widely used batch control system.

Torque is heavily influenced by the IEEE 1003.1 specification, in particular Section 3 (Batch Eviron-
ment Services) [http://www.opengroup.org/onlinepubs/009695399/utilities/xcu_chap03.html] of the
Shell & Utilities volume. However, it also includes some additional features, such as support for jobs
in the suspended state.

Access control

Torque uses username-and-host based authorisation. Users may query the status of their own jobs,
but may require special privileges to view the status of all jobs. Because of this, the MonAMI torque
plugin may require authorisation to gather monitoring information.

To grant torque sufficient privileges to conduct its monitoring, the Torque server must have either
query_other_jobs set to True (allowing all users to see other user's job information) or have the
MonAMI user (typically monami) and host added as one of the operators. Setting either option
is sufficient and both can be achieved using the qmgr command.

The command qmgr -ac "list server query_other_jobs" will display the current value
of query_other_jobs. To allow all users to see other user's job status, run the command: qmgr
-ac "set server query_other_jobs = True".

The command qmgr -ac "list server operators" will display the current list of oper-
ators. To add user monami running on host mon-hq.example.org as another operator, use the
command qmgr -ac "set server operators += monami@mon-hq.example.org".

Queue groups

It is often useful to group together multiple execution queues when generating statistics. The group
may represent queues with a similar purpose, or the group represents a set of queues that support a
wider community. MonAMI supports this by allowing the definition of queue-groups and will report
statistics for each of these groups.

A queue-group is defined by including a group attribute in the torque target. Multiple groups can be
defined by repeating the group attributes, one attribute for each group.

A group attribute's value defines the group like: name : queue1, queue2, ..., where name
is the name of the queue-group and queue1 is the first queue to be included, queue2 the second, and
so on. The group statistics are generated based on all jobs that have any of the listed execution queues.

As an example, the following torque stanza defines four groups: HEP, LHC, Grid OPS, and Local.

[torque]
 group = HEP : alice, atlas, babar, dzero, lhcb, cms, zeus
 group = LHC : atlas, lhcb, cms, alice
 group = Grid OPS : dteam, ops
 group = Local : biomed, carmont, glbio, glee

Attributes

host string, optional the hostname of the Torque server. If not specified, a default val-
ue will be used, which is specified externally to MonAMI. This
default may be localhost or may be configured to whatever is
the most appropriate Torque server.

group string, optional defines a new queue-group that statistics are collected against. The
group value is like: name : queue1, queue2, Each

http://www.opengroup.org/onlinepubs/009695399/utilities/xcu_chap03.html
http://www.opengroup.org/onlinepubs/009695399/utilities/xcu_chap03.html
http://www.opengroup.org/onlinepubs/009695399/utilities/xcu_chap03.html

Configuring MonAMI

31

Torque queue may appear in any number (zero or more) of queue-
group definitions.

3.4.16. Varnish
The Varnish home page [http://varnish.projects.linpro.no/] describes Varnish as a “state-of-the-art,
high-performance HTTP accelerator. Varnish is targeted primarily at the FreeBSD 6/7 and Linux
2.6 platforms, and takes full advantage of the virtual memory system and advanced I/O features offered
by these operating systems.”

Varnish offers a management interface. The MonAMI varnish plugin connects to this this interface
and request the server's current set of statistics.

Attributes

host string, optional the host on which Varnish is running. Default is localhost.

port integer, optional the TCP port on which the Varnish management interface is lis-
tening. The default value is 6082.

3.5. Reporting plugins
Information needs to go somewhere for it to be useful. MonAMI's job is to take data from one or
more monitoring targets and send it somewhere or (more often) to multiple destinations. Reporting
plugins deal with “sending data somewhere” and the reporting targets are configured reporting plugins
to which data can be sent.

As with monitoring targets, all reporting targets need a unique name. By default a reporting target will
adopt the plugin's name. As with monitoring targets, it is recommended to set a unique, meaningful
name for each reporting target in complex configurations.

3.5.1. filelog
The filelog plugin stores information within a file. The file format is deliberately similar to standard
log files, as found in the /var/log filesystem hierarchy. New data is appended to the end of the
file. Fields are separated by tab characters and each line is prefixed by the date and time when the
data was taken.

If the file does not exist, it is created. When the file is created, a header line is added before any data.
This line starts with the hash (#) symbol, indicating that the line does not contain data. The header
consists of a tab-separated list of headings for the data. This list is correct for the first row of data. If the
data is aggregated from multiple monitoring targets, then the order of those targets is not guaranteed.

Attributes

filename string, required the full path of the file into which data will be stored.

3.5.2. FluidSynth
The FluidSynth project provides code (a library and a program) that accepts MIDI (a standard music
interface) information and provides a MIDI-like API, providing high-quality audio output. The flu-
idsynth software is based on the SoundFont file format. Each SoundFont file contains sufficient infor-
mation to reproduce the sound from one or more musical instruments. These SoundFont files might
include instruments of an orchestra, special effects (e.g., explosions) or sounds taken from nature (e.g.,
thunder or a dog barking). More information about fluidsynth can be found on the fluidsynth home
page [http://www.nongnu.org/fluid/].

http://varnish.projects.linpro.no/
http://varnish.projects.linpro.no/
http://www.nongnu.org/fluid/
http://www.nongnu.org/fluid/
http://www.nongnu.org/fluid/

Configuring MonAMI

32

The fluidsynth plugin renders information as sound. The presence of sound might indicate a problem,
or the pitch of the note might indicate how hard some application is working.

To achieve sound, the plugin either connects to some fluidsynth program or uses the fluidsynth library
API, depending on how it is configured. If the configuration specifies a host attribute, then the plugin
will attempt to connect to the fluidsynth program running on that host. If no host attribute is speci-
fied, then the fluidsynth plugin will use the fluidsynth library to configure and start a new fluidsynth
instance.

When running the embedded fluidsyth code, the plugin requires at least one soundfont attribute.
These attributes describe where the SoundFont files are located. Each soundfont attribute is a com-
ma-separated list, specifying the short name for that file (used for the note attributes) and the location
of the SoundFont file: short name , path to SoundFont file

An example soundfont attribute is:

soundfont = hi, /usr/share/SoundFonts/Hammered_Instruments.sf2

Using remote fluidsynth

When the plugin is connecting to a SoundFont program running independent of MonAMI, all sound-
font attributes are ignored. Instead, all SoundFonts must be loaded independently of MonAMI. The
easiest way of achieving this it to specify the SoundFont files as command-line options. For example:

fluidsynth -nis /usr/share/SoundFonts/Hammered_Instruments.sf2

Making sounds

The note attributes describe how sound is generated. The attribute has seven comma-separated val-
ues, like this:

note = sf, bank, pgm, note-range, duration, source, data-range

These attributes have the following meanings.

sf (string or integer) When no host attribute has been specified (i.e. using the flu-
idsynth library API), this is the short name for the SoundFont
to use as described in soundfont attributes.

When connecting to a fluidsynth program, this is the (integer)
number of the SoundFont to use. The first loaded SoundFont
file is numbered 1.

bank (integer) This is the MIDI bank within the SoundFont to use. A MIDI
bank is often a family of similar instruments. The available op-
tions will depend the loaded SoundFont files, but most Sound-
Fonts will define instruments in bank 0.

pgm (integer) This is the MIDI program to use for this note. A program is
a unique number for an instrument within a specified MIDI
bank. General-MIDI defines certain programs to be named in-
struments, some SoundFonts follow General-MIDI for bank 0.

note-range (integer or integer
range)

This details which notes (pitches) might be played. For exam-
ple, note-range might be 53 if only a single note pitch is
needed, or 20-59 to specify a range of notes. The range of
notes must specify the lower note first.

Configuring MonAMI

33

duration (integer) This is the duration of the note, in tenths of a second (or de-
ciseconds). A duration of 20 results in a two-second note
and 5 results in notes that last for half a second (500 ms).

source (string) This is the path in a datatree for the information. The metric
can be an integer number, a floating-point number or a string.

If the metric is an integer or floating-point number then the met-
ric value is used to decide whether the note should be played
and if so, at which pitch.

If the metric has type string, then the metric's value is checked
to see if a note should be played. For string metrics, the note-
range should be a single note.

data-range (string or numeri-
cal range)

This is the valid range of data that will produce a note.

If the metric has a string value, then the data-range should
be a string. If the metric matches the string value, a note will
be played.

If the metric has a numerical result, the data-range should
be a range (e.g., 0-10 or 10-0).

Metric values in that range will cause a note to be played. The
pitch of the note increases as the metric value tends towards the
second number. With the data-range 0-10 a metric value
of 10 produces the highest pitch note; with the data-range
10-0 a metric value of 0 produces the highest pitch note.

Either number (or both) can be sufficed by a caret symbol (^)
indicating that numbers outside the range should be truncated
to this value. A data-range of 0-10^ indicates that met-
ric values greater than 10 should produce notes as if 10 was
observed, but that any measurements less than 0 should be ig-
nored, and so not played.

Here are some example note attributes with brief explanations.

note = hi, 0, 35, 60, 10, apache.severity, error

Play note 60 of program (instrument) 35, bank 0 of the hi SoundFont file for a duration of 10 de-
ciseconds (or 1 s) if the apache.severity metric has a value of error. If the datatree provided
contains no apache.severity then no note is sounded.

note = 1, 0, 3, 38-80, 2, apache.transferred, 0 - 4096^

Play program (instrument) 3, bank 0 of the first loaded SoundFont for 2 decisecond (0.2 s) with the
pitch dependant on the size transferred. The note range is 38 to 80, with corresponding values of 0 kB
to 4 kB: higher metric values result in higher pitch notes. Values of transfer size greater than 4 kB are
played, but truncated, resulting in a note at pitch 80 being played.

note = hi, 0, 75, 60-80, 4, apache.Threads.waiting, 10^ - 0

Play program 75, bank 0 of the hi SoundFont for 4 deciseconds (0.4 s) based on the number of threads
in waiting state. Note 80 is played when 10 (or more) threads are in waiting state; note 60 if there
is no thread in this state; if there are 1 to 9 threads, the results are somewhere in between.

Configuring MonAMI

34

There are a number of other options that may improve the performance of the embedded fluidsynth
engine. They are described briefly in the summary of this plugin's options below,

Attributes

soundfont string, ignored/re-
quired

a comma-separated list of a nickname and an absolute path to
the SoundFont file. The attribute may be repeated to load mul-
tiple SoundFont files. When using the fluidsynth library, the
soundfont attributes are required; when connecting to a ex-
ternal fluidsynth program these attributes are ignored.

note string, required Each note attribute indicates sensitivity to some metric's val-
ue. Multiple note attributes may be specified, one for each
metric.

The note attribute values are a comma-separated list. The
seven items are: the SoundFont short-name or instance count,
bank (integer), program (integer), note-range, duration (inte-
ger), source (datatree path), data-range. The SoundFont short-
name is defined by the soundfont attribute.

bufsize integer, optional the desired size for the audio buffers, in Bytes. This is ignored
when connecting to an external fluidsynth program.

bufcount integer, optional how many audio buffers there should be. Each buffer has size
given by the bufsize attribute. This attribute is ignored when
connecting to an external fluidsynth program.

driver string, optional the output driver. The default is “ALSA”. Other common pos-
sibilities are “OSS” and “JACK”. This attribute is ignored when
connecting to an external fluidsynth program.

alsadevice string, optional the output ALSA device. Within MonAMI, the default is
“hw:0” due to performance issues with the ALSA default de-
vice “default”. This attribute is ignored when connecting to
an external fluidsynth program.

samplerate integer, optional the sample rate to use (in Hz). The default will be something
appropriate for the sound hardware. This attribute is ignored
when connecting to an external fluidsynth program.

reverb integer, optional whether the reverb effect should be enabled. “0” indicates dis-
abled, “1” enabled. Default is enabled. Disabling reverb may
reduce CPU impact of running fluidsynth. This attribute is ig-
nored when connecting to an external fluidsynth program.

chorus integer, optional whether the chorus effect should be enabled. “0” indicates dis-
abled, “1” enabled. Default is enabled. Disabling chorus may
reduce CPU impact of running fluidsynth. This attribute is ig-
nored when connecting to an external fluidsynth program.

maxnotes integer, optional the maximum number of concurrent notes. If more than this
is attempted, some notes may be silenced prematurely. This
attribute is ignored when connecting to an external fluidsynth
program.

3.5.3. Ganglia
Ganglia is a monitoring system that allows multiple statistics to be gathered from many machines and
those statistics plotted over different time-periods. By default, it uses multicast to communicate within

Configuring MonAMI

35

a cluster, and allows results from multiple clusters to collated as a single “grid”. More information
about Ganglia can be found within the Ganglia project site [http://ganglia.sourceforge.net/] and a
review of the Ganglia architecture is presented in the paper the ganglia distributed monitoring system:
design, implementation, and experience. [http://ganglia.info/papers/science.pdf].

Figure 3.2. Ganglia graphs showing data from dpm and tcp targets

Ganglia comes with a standard monitoring daemon (gmond) that monitors a standard set of statistics
about a particular machine. It also includes a command-line utility (gmetric) that allows for the record-
ing of additional metrics.

The MonAMI ganglia plugin emulates the gmetric program and can send additional metrics within a
Ganglia-monitoring cluster. These appear automatically on the ganglia web-pages, either graphically
(for graphable metrics) or as measured values.

Note

Please note that there is a bug in Ganglia prior to v3.0.0 that can result in data corruption when adding custom data.
MonAMI will trigger this bug, so it is strongly recommended to upgrade Ganglia to the latest version.

Network configuration

The Ganglia gmond daemon loads its configuration from a file gmond.conf. For some distributions,
this file is located at /etc/gmond.conf, for other it is found at /etc/ganglia/gmond.conf.
The ganglia plugin can parse the gmond.conf file to discover how it should deliver packets. It
searches both standard locations for a suitable file. If found, it will use the setting contained within
the file, so no further configuration is necessary. If a suitable gmond configuration file exists at some
other location, the plugin can still use it. The config attribute can be set to the config file's location.

Although it is recommended to run MonAMI in conjunction with gmond, this is not a requirement.
In the absence of a suitable gmond configuration file, the multicast channel and port to which metric
updates should be sent can be set with the multicast_ip_address and multicast_port
attributes respectively. By default, the kernel will choose to which network interface the multi-
cast traffic is sent. If this decision is wrong, the interface can be specified explicitly using the the
multicast_if attribute.

Serialisation

MonAMI uses a tree-structure for storing metrics internally. In contrast, Ganglia uses a flat name-
space for its metrics. To send data to Ganglia, the metric names must be “flattened” to a simple name.

http://ganglia.sourceforge.net/
http://ganglia.sourceforge.net/
http://ganglia.info/papers/science.pdf
http://ganglia.info/papers/science.pdf
http://ganglia.info/papers/science.pdf

Configuring MonAMI

36

To obtain the Ganglia metric name, the elements of the metric's path are concatenated, separated by
a period (.) character. For example, the metric torque.Scheduler.period is the period, in
seconds, between successive calls Torque makes to the scheduler (see Section 3.4.15, “Torque”).

Since the period character has a special meaning to the ganglia plugin, it is recommended to avoid
using this character elsewhere, for example, within torque group names. Although there are no prob-
lems with sending the resulting metrics, it introduces a source of potential confusion.

Avoiding metric loss

Ganglia uses multicast UDP traffic for metric updates, which is unreliable protocol. Unlike the reliable
TCP protocol, UDP has no mechanisms for detecting if a packet was not delivered or for retransmitting
missing data. However, over local area networks it is very unlikely that the network packets will be
lost.

If a large number of metrics are updated at the same time, there is a corresponding deluge of packets.
If these packets are delivered too quickly, the recipient gmond process may not be able to keep up.
Those packets not accepted immediately by gmond will be held in a backlog queue, allowing gmond
to process them when free. However, if the size of this backlog queue exceeds a threshold, further
packets will not be queued and gmond will not see the corresponding metric update messages. The
threshold varies, but observed values are in the range 220–450 packets.

To reduce the risk of metric updates being lost, the MonAMI ganglia plugin will pause after delivering
a multiple of 50 metric updates. By default the pause is 100 ms, but the delivery_pause attribute
can be used to fine-tune this behaviour. Under normal circumstances, the default delivery_pause
value results in a negligible risk of metric updates being lost. However, if the machine receiving the
metrics is under heavy load you may notice metrics being dropped.

To further reduce the risk of metric update loss, monitoring activity can be split into separate activities
that are triggered at different times. In the following example, two monitoring targets (torque and
maui) are sampled every minute with all metrics sent to Ganglia.

[torque]
 cache = 60

[maui]
 cache = 60

[sample]
 interval = 1m
 read = torque, maui
 write = ganglia

[ganglia]

If the resulting datatree has too many metrics there will be a risk that some of metric updates will be
lost. To reduce the risk of this, the same monitoring can be achieved by splitting the activity into two
parts. The following example shows the same monitoring but split into two independent activities.
Both monitoring targets are monitored every minute but now at different times.

[torque]
 cache = 60

[maui]
 cache = 60

[sample]
 interval = 1m
 read = torque
 write = ganglia

[sample]

Configuring MonAMI

37

 interval = 1m
 read = maui
 write = ganglia

[ganglia]

An alternative approach is to increase the UDP packet buffer size. Increasing the buffer size will allow
more packets to be queued before metric updates are lost. The following set of commands, run as root,
will restart gmond with a larger network receive buffer (N.B. the hash character represents the prompt
and should not be typed).

orig_default=$(cat /proc/sys/core/rmem_default)
cat /proc/sys/net/core/rmem_max > /proc/sys/net/core/rmem_default
service gmond restart
echo $orig_default > /proc/sys/net/core/rmem_default

Another method of setting rmem_default is to use the /etc/sysctl.conf file. A sample entry
is given below:

Enlarge the value of rmem_default for gmond. Be sure to check the
number against /proc/sys/net/core/rmem_max.
net.core.rmem_default=131071

dmax

Each metric has a corresponding dmax value. This value specifies when Ganglia should consider the
metric as no longer being monitored. If a metric has not been updated for dmax seconds Ganglia
will remove it. Graphs showing historical data are not purged; however, when delivery of the metric
resumes there may be a corresponding gap in the historical data.

As a special case, if a metric's dmax value is set to zero, Ganglia will never purge that metric. Should
MonAMI stop updating that metric, its last value will be graphed indefinitely, or until either MonAMI
resumes sending fresh data or the metric is flushed manually (by restarting the gmond daemon).

The optimal value of dmax is a compromise. If the value is set too low then an unusually long delay
whilst gathering data might trigger the metric being purged. If set too high, then Ganglia will take
longer than necessary to notice if MonAMI has stopped sending data.

When updating a metric, a fresh value of dmax is also sent. This allows MonAMI to adjust the dmax
value over time. For event-driven data the default value is zero, effectively disabling the automatic
removal of data. With internally triggered data (e.g., data collected using a sample target), the value of
dmax is calculated taking into account when next data is scheduled to be taken and an estimate of how
long that data acquisition will take. Section 3.3.4, “Estimating future data-gathering delays” describes
how MonAMI estimates the delay in future data-gathering.

Calculating a good value of dmax also requires knowledge of the gmetad polling interval: the time be-
tween successive gmetad requests to gmond. This is specified in the gmetad configuration file (usual-
ly either /etc/gmetad.conf or /etc/ganglia/gmetad.conf). Each data_source line
has an optional polling interval value, expressed in seconds. If the polling interval is not specified,
gmetad will use 15 seconds as a default value.

In general, the MonAMI ganglia plugin cannot discovering the gmetad polling interval automatically.
Instead, the dmax calculation assumes the polling interval is less than two minutes. This is very likely
to be sufficient; but, should the gmetad polling interval be longer than two minutes, the correct value
can be specified (in seconds) using the gmetad_poll attribute.

Separate from estimating a good value of dmax, an explicit dmax value can be specified using the
dmax attribute. For example, setting the dmax attribute to zero will set all metric update's dmax values
to zero unconditionally, so preventing Ganglia from purging any metric.

Configuring MonAMI

38

It is recommended that the default value of dmax is used. If long gmetad polling intervals are in use,
include a suitable gmetad_poll attribute.

Multiframe extension

Ganglia's standard web interface provides a good overview of the metrics supplied by gmond, but for
other metrics are displayed either as a single graph or not at all.

To provide a rich view of the data MonAMI collects, an extension to the standard web interface has
been developed. This supports creating tables, custom graphs and pie-charts, support for iGoogle and
embedding elements within other pages.

The multiframe extension is currently maintained within the external CVS module [http://
sourceforge.net/cvs/?group_id=151885]. Instructions on how to install and extend these graphs are
available within that module.

Attributes

multicast_ip_address
string, optional

the multicast IP address to which the data should be sent.
If no IP address is specified, the Ganglia default value of
239.2.11.71 is used.

multicast_port integer, op-
tional

the port to which the multicast traffic is sent. If no port is spec-
ified, the Ganglia default port of 8649 is used.

host string, optional The IP address of the host to which UDP unicast traffic should
be sent. Specifying this option will switch off sending metrics
as multicast. The default is not to send unicast traffic, but to
send multicast traffic.

port integer, optional the UDP port to which unicast traffic should be sent. If host is
specified and port is not then the default port is used. If host
is not specified, then port has no effect.

multicast_if string, optional the network device through which multicast traffic should be
sent (e.g., “eth1”). If no device is specified, a default is chosen
by the kernel. This default is usually sufficient.

config string, optional the non-standard location of a gmond configuration file.

gmetad_poll integer, optional the polling interval of gmetad in seconds. This is the time be-
tween successive gmetad requests to gmond. By default, the
plugin assumes this is two minutes or less. If this is wrong, the
correct value is specified using this attribute.

dmax integer, optional the absolute period, in seconds, after the last metric update af-
ter which Ganglia should remove that metric. A value of zero
disables this automatic purging of metrics. By default, the plu-
gin will estimate a suitable value based on observer behaviour
when gathering data.

delivery_pause integer, op-
tional

the delay in milliseconds between an exact multiple of 50 and
the following metric update. Every 50 UDP packets, the plugin
will pause briefly. The default (100 ms) is an empirical value
that should be sufficient. The minimum and maximum values
are 5 ms and 2000 ms.

3.5.4. GridView
GridView is a Worldwide LHC Computational Grid (WLCG) project that provides centralised moni-
toring for the WLCG collaboration. It collates information from multiple sources, including R-GMA

http://sourceforge.net/cvs/?group_id=151885
http://sourceforge.net/cvs/?group_id=151885
http://sourceforge.net/cvs/?group_id=151885

Configuring MonAMI

39

and MonaLisa, and displays this aggregated information. In addition to accumulated data, it can accept
data sent directly via a web-service, which is how this reporting plugin works. The protocol allows
arbitrary data to be uploaded. Live data and further details are available from the GridView homepage
[http://gridview.cern.ch/GRIDVIEW/].

The gridview plugin implements the GridView protocol, allowing data to be uploaded directly into
GridView. Each datatree sent is directed towards a particular table, as described by the table at-
tribute. The table name is arbitrary and describes the nature of the data and contains one or more fields.
The number of fields and each of the fields type is table-specific.

The send attribute is a comma-separated list of which data, and in what order data is to be sent. Each
element of the list is the name of some element within a datatree; elements are separated by a dot (.).
Should any of the elements be missing, the corresponding field sent to GridView will be blank.

Attributes

table string, required the name of the table within GridView to populate with data.

send string, required the comma-separated list of data to send: one entry for each
field. The data should be a path within a datatree using a dot
(.) as the separator between names within the datatree.

endpoint string, optional the SOAP endpoint to which MonAMI should contact. The
default endpoint is http://grvw003.cern.ch:8080/
wsarch/services/WebArchiverAdv

3.5.5. grmonitor
Gr_Monitor is an application that uses the OpenGL API to display monitoring information as a series
of animated 3D bar charts. More information is available from the Gr_Monitor home page [http://
users.actrix.co.nz/michael/grpage.html].

Figure 3.3. gr_Monitor showing data from apache and mysql targets

Gr_Monitor uses a flexible XML format for data exchange. This allows it to receive data from a
variety of helper applications, each of which collect information from different sources. Further custom
applications allow easy expansion of gr_Monitor's capabilities.

Recent versions of gr_Monitor provide the facility to receive this XML data from the network (through
a TCP connection). The MonAMI grmonitor plugin provides a network socket that the gr_Monitor
application can connect to. To connect gr_Monitor to MonAMI, use the -tcp option:

http://gridview.cern.ch/GRIDVIEW/
http://gridview.cern.ch/GRIDVIEW/
http://users.actrix.co.nz/michael/grpage.html
http://users.actrix.co.nz/michael/grpage.html
http://users.actrix.co.nz/michael/grpage.html

Configuring MonAMI

40

gr_monitor -tcp hostname:port

The option hostname should be replaced with the hostname of the MonAMI daemon (e.g., local-
host) and port should be replaced by whatever TCP port number MonAMI is listening on (50007
by default).

Metrics from a datatree are mapped to positions within groups of 3D bar charts, which gr_Monitor then
plots. To configure this mapping, the grmonitor plugin expects at least one of each of the following
attribute: group, metric, metricval, and either item or itemlist. All of the attributes may
be repeated.

A group is a rectangular collection of metrics, usually with a common theme; for example, in Fig-
ure 3.3, “gr_Monitor showing data from apache and mysql targets” there are two groups: one shows
Apache thread status, the other shows per-table metrics for a MySQL database. Each group has a
label or title and is displayed as a distinct block in the 3D display. In the MonAMI configuration,
group attribute values have a local-name for the group, a colon, then the display label for this group.
The group local-name is used when defining how the group should look and the label is passed to
gr_Monitor to be displayed.

The item attribute describes a specific column within a group. Typically, each item describes one
of a list of things; for example, one filesystem of several mounted, a queue within the set of batch-
system queues, a table within the many a database stores. The item values have the group short-
name, a comma, an item short-name, a colon, then the display label for this item. An item short-name
is used to identify this item and the display label is passed on to gr_Monitor.

A metric attribute describes a generic measurable aspect of the items within a group; e.g., used
capacity and free capacity (for filesystems), or number of jobs in running state and number in queued
state for a batch system. The metric correspond to the rows of related information shown in Fig-
ure 3.3, “gr_Monitor showing data from apache and mysql targets”. The metric values have the form
group short-name, comma, metric short-name, colon, then the label. The metric short-name is used to
identify this metric and the label is passed on to gr_Monitor as the label it should display for this row.

The final required attribute type is metricval. The metricval attributes map the incoming datatree
to bars within the 3D bar-chart. There should be a metricval for each (item,metric) pair in each group.
metricval attribute values have a comma-separated list of group, item and metric short-names, a colon,
then the datatree path for the corresponding MonAMI metric.

The following example demonstrates configuring a grmonitor target. It defines a single group “Torque
queue info” with three items (columns) “Atlas”, “CMS” and “LHCb”. Each item has two metric
attributes: “Running” and “Queued”. The metricval attributes map an incoming datatree to these
values.

[grmonitor]
 group = g1 : Torque queue info

 metric = g1, m_running : Running
 metric = g1, m_queued : Queued

 item = g1,i_atlas : Atlas
 item = g1,i_cms : CMS
 item = g1,i_lhcb : LHCb

 metricval = g1,i_atlas, m_running: \
 torque.Queues.Execution.ByQueue.atlas.Jobs.State.running
 metricval = g1,i_atlas, m_queued: \
 torque.Queues.Execution.ByQueue.atlas.Jobs.State.queued

 metricval = g1,i_cms, m_running: \
 torque.Queues.Execution.ByQueue.biomed.Jobs.State.running
 metricval = g1,i_cms, m_queued: \
 torque.Queues.Execution.ByQueue.biomed.Jobs.State.queued

Configuring MonAMI

41

 metricval = g1,i_lhcb, m_running: \
 torque.Queues.Execution.ByQueue.lhcb.Jobs.State.running
 metricval = g1,i_lhcb, m_queued: \
 torque.Queues.Execution.ByQueue.lhcb.Jobs.State.queued

Using itemlist

Writing out all metricval attributes can be quite tiresome and error prone. The data provided by
a datatree might also change over time, perhaps dynamically whilst MonAMI is running. For these
reasons, MonAMI supports an express method of describing the mapping, which uses the itemlist
attribute. This makes the mapping more dynamic and its description more compact.

The itemlist replaces the need for specifying item attributes explicitly. A group should have at
least one item or itemlist otherwise no data would be plotted.

The itemlist attribute is similar to an item but, instead of specifying the label, the value after
the colon specifies a branch of the datatree. Specifying an itemlist also affects how metricval
attributes are interpreted.

When a new datatree is received, the grmonitor target will look for the specified branch and will
consider each child entry as an item. For example, if the incoming datatree has a branch aa.bb with
two child branches aa.bb.item1 and aa.bb.item2, specifying an itemlist attribute with
aa.bb is equivalent to specifying two items labelled “item1” and “item2”. This is most useful when
the indicated branch contains a list of similar items.

The metric attributes are as before; they provide the graphical labels for the metrics. There must be
a metric value for each row within the group.

The metricval attributes describe the path within the datatree to the desired metric, relative to
the item's branch. If the itemlist specifies a path aa.bb and the metricval specifies xx.yy,
then values will be plotted for: aa.bb.item1.xx.yy (labelled “item1”), aa.bb.item2.xx.yy
(labelled “item2”), etc. These must be valid metrics or they will be ignored.

metricval attributes may take a special value: a single dot. This indicates that the immediate chil-
dren of the itemlist path should be plotted directly. For example, if an itemlist attribute has a
value of aa.bb and metricval is . then values will be plotted for aa.bb.item1 (as “item1”),
aa.bb.item2 (as “item2”), and so on. A metricval with a dot will only plot metrics if the items
immediately below the itemval branch are metrics, branches will be ignored.

The following example demonstrates itemlist and illustrates using both metricval to point to
metrics and the special dot value. It creates two groups: one that plots the number of Apache thread in
each state (for details, see Section 3.4.2, “Apache”) and another that plots three metrics from MySQL
(see Section 3.4.8, “MySQL”). The MySQL group plots three table-specific metrics for all tables in
the mysql database. This is the configuration that produced the output shown above in Figure 3.3,
“gr_Monitor showing data from apache and mysql targets”.

[grmonitor]
 group = gApache : Apache
 itemlist = gApache, iThreadState : apache.Threads
 metric = gApache, mCount : Count
 metricval = gApache, iThreadState, mCount : .

 group = gMysql : MySQL (mysql database)
 metric = gMysql, mCurLen : Length
 metric = gMysql, mIdxLen : Idx length
 metric = gMysql, mRows : Rows
 itemlist = gMysql, iDbMysql: mysql.Database.mysql.Table
 metricval = gMysql, iDbMysql, mCurLen : Datafile.current
 metricval = gMysql, iDbMysql, mIdxLen : Indexfile.length
 metricval = gMysql, iDbMysql, mRows : Rows.count

Configuring MonAMI

42

Attributes

port integer, optional the network port on which the plugin will listen. If not speci-
fied, then the default (50007) is used.

group string, at least one defines a rectangular set of data results, forming a 3D bar chart.
Attribute values have the form group name : group la-
bel

metric string, at least one per
group

hold information about a row of data within a group. Attribute
values have the form group name, metric name :
metric label

item string, at least one per group
(if there are no itemlist at-
tributes)

describes a column of data within a group. Attribute values
have the form group name, item name : item label

itemlist string, at least one per
group (if there are not item at-
tributes)

describes a set of columns of data within a group, by specifying
a branch within the incoming datatree. The immediate child of
this branch are considered part a list of items.

Attribute values have the form group name, item name
: branch path

metricval string, one per
(group,metric,item)

Definition of which MonAMI metric maps to a particular lo-
cation within a group. Attributes values have the form group
name, item name, metric name : metric path

3.5.6. KsysGuard
KSysGuard is a default component of the KDE desktop environment. It is designed for monitoring
computers and separates monitoring into two distinct activities: gathering information and presenting
it to the user. Displaying information is achieved with a GUI program KSysGuard (written using the
KDE framework) whilst gathering data is handled by a small program, ksysguardd, that can run
as a remote daemon. The ksysguard MonAMI plugin emulates the ksysguardd program, allowing
KSysGuard to retrieve information.

Figure 3.4. KSysGuard showing data from the nut plugin

Configuring MonAMI

43

KSysGuard supports a variety of display-types (different ways of displaying sensor data). Some of
these display-types allow data from multiple sensors to be combined. Worksheets (panels with a grid
of different displays) are easily updated using drag-and-drop and can be saved for later recall.

KSysGuard and ksysguardd communicate via a documented stream-protocol. Typical default us-
age has ksysguardd started automatically on the local machine, with communication over the pro-
cess' stdout and stderr file-handles.

Collecting data from remote machines is supported by KSysGuard either via ssh or using direct TCP
communication. With the ssh method, the GUI establishes an ssh connection to the remote machine
and executes ksysguardd (data is transfered through ssh's tunnelling of stdout and stderr).
With the TCP method, KSysGuard establishes a connection to an existing ksysguardd instance that
is running in network-daemon mode.

The MonAMI ksysguard plugin implements the KSysGuard stream-protocol and acts like ksys-
guardd running as a daemon. By default, it listens on port 3112 (ksysguardd's default port) and
accepts only local connections. A more liberal access policy can be configured by specifying one or
more allow attributes.

Note

Older versions of ksysguard contained a bug that was triggered by a sensor name containing spaces. This was fixed
in KDE v3.5.6 or later.

To view the data provided by MonAMI within KSysGuard, select File → Connect Host, which will
open a dialogue box. Enter the hostname of the machine MonAMI is running on in the Host input and
make sure the Connection Type is set to Daemon. You should see the host's name appear within the
sensor-browser tree (on the left of the window). Expanding the hostname will trigger KSysGuard to
query MonAMI for the list of available metrics. If this list is long, it can take a while for KSysGuard
to parse the list.

More details on how to use KSysGuard can be found in the KSysGuard Handbook [http://docs.kde.org/
development/en/kdebase/ksysguard/].

Within MonAMI, the ksysguard target configured must specify a target from which the data is re-
quested (via the read parameter). This source can be either an explicit monitoring plugin (e.g., using
a target from the apache plugin) or a named sample target. The named sample can either act solely as
an aggregator for KSysGuard (i.e., with no write or interval specified) or can be part of some
other monitoring activity. See Section 3.6, “sample” for more information on sample targets.

The following example shows the ksysguard plugin directly monitoring an Apache server running on
www.example.org.

[apache]
 host = www.example.org

[ksysguard]
 read = apache

The following example demonstrates how to use a named-sample to monitor multiple monitoring
targets with KSysGuard.

[apache]
 name = external-server
 host = www.example.org

[mysql]
 name = external-mysql
 host = mysql-serv.example.org
 user = monami
 password = monami-secret

http://docs.kde.org/development/en/kdebase/ksysguard/
http://docs.kde.org/development/en/kdebase/ksysguard/
http://docs.kde.org/development/en/kdebase/ksysguard/

Configuring MonAMI

44

 cache = 10

[apache]
 name = internal-server
 host = www.intranet.example.org

[mysql]
 name = internal-mysql
 host = mysql-serv.intranet.example.org
 user = monami
 password = monami-secret
 cache = 10

[sample]
 name = ksysguard-info
 read = external-server, external-mysql, internal-server, internal-mysql

[ksysguard]
 read = ksysguard-info

Attributes

read string, required the name of the target from which data is to be requested

port integer, optional the port on which the ksysguard target will listen for connections.
If no port is specified, then 3112 will use, the default for ksys-
guardd.

allow string, optional a host or subnet from which this plugin will accept connections.
This can be specified as a simple hostname (e.g., mydesktop),
a fully qualified domain name (e.g., www.example.com), an
IPv4 address (e.g., 10.1.0.28), an IPv4 address with a netmask
(e.g. 10.1.0.0/255.255.255.0) or an IPv4 subnet using
CIDR notation (e.g., 10.1.0.0/24).

The plugin will always accept connections from localhost and
from the host's fully qualified domain name.

This attribute can be repeated to describe all necessary authorised
hosts or networks.

3.5.7. MonALISA
This plugin pushes information gathered by MonAMI into the MonALISA monitoring system (Mon-
ALISA home page [http://monalisa.cacr.caltech.edu/]). It does this by sending the data within a UDP
packet to a MonALISA-Service (ML-Service) server. ML-Service is a component of MonALISA that
can be located either on the local site or centrally.

Within the MonALISA (ML) hierarchy, a cluster contains one or more nodes (computers). These
clusters are grouped together into one or more farms. Farms are handled by MonALISA-Services (ML-
Services), usually a single farm per ML-Service. The ML-Service is a daemon that is responsible for
collecting monitoring data, and providing both a temporary store for that data and a means by which
that data can be acquired.

Clients query the data provided by ML-Services via transparent proxies. There are also LookUp Ser-
vices (LUSs) that contain soft-state registrations of the proxies and ML-Services. The LUSs provide
a mechanism by which client requests are load-balanced across different proxies and dynamic data
discovery can happen.

The ML-Services acquire data through a number of MonALISA plugins. One such plugin is XDRUDP,
which allows nodes to send arbitrary data to the ML-Service. The MonALISA team provide an API

http://monalisa.cacr.caltech.edu/
http://monalisa.cacr.caltech.edu/
http://monalisa.cacr.caltech.edu/

Configuring MonAMI

45

for sending this data called ApMon. It is through the XDRUDP ML-plugin that MonAMI is able to
send gathered data.

Figure 3.5. Example deployment with key elements of MonALISA shown.

Note that each MonAMI monalisa target reports to a specific host, port, cluster triple. If you wish
to report data to multiple ML-Services or to multiple ML clusters, you must have multiple MonAMI
monalisa targets configured: one for each host or cluster.

Attributes

host string, optional the hostname of the ML-Service. The default value is local-
host.

port integer, optional the port on which the ML-Service listens. The default value is
8884.

password string, optional the password to access the MonAlisa service.

Warning

The password is sent plain-text: don't share a sensitive password
with MonALISA! By default, no password is sent.

apmon_version string, optional the plugin reports “2.2.0” as an ApMon version string by de-
fault. This option allows you report a different version.

cluster string, required the cluster name to report.

node string, optional the node name to report. There are two special cases: if the
literal string IP is used, then MonAMI will detect the IP ad-
dress and use that value; if the literal string FQDN is used, then
MonAMI will determine the machine's Fully Qualified Do-
main Name and use that. The default is to report the machine's
FQDN.

Configuring MonAMI

46

3.5.8. MySQL
In addition to monitoring a MySQL server, the mysql plugin can also append monitoring data into a
table. If correctly configured, each datatree the plugin receives will be stored as a new row within a
specified table.

The two MySQL operations (monitoring and storing results) are not mutually exclusive. A mysql target
can be configured to both store data and also to monitoring the MySQL server it is contacting.

Two attributes are required when using the mysql plugin for storing results: database and table.
These specify into which MySQL database and table data is to be stored.

If the database named in the database attribute does not exist, no attempt is made to create it. This
will prevent MonAMI from storing any data.

If the table does not exist, the plugin will attempt to create it when it receives data. The plugin deter-
mins the types for each field from the field's corresponding metric. If, when creating the table, a field
attribute has no corresponding metric within the incoming datatree, the corresponding field within the
database table is created as TEXT.

Privileges

In order to insert data, the MySQL user the plugin authenticates as must have been granted sufficient
privileges. Additional privileges are needed if you wish to allow the plugin to create missing tables
as needed.

The following SQL commands describes how to create a database mon_db, create a MySQL user
account monami with password monami-secret, and grant that user sufficient privileges to create
tables within the monitoring database and insert new data.

CREATE USER 'monami' IDENTIFIED BY 'monami-secret';
CREATE DATABASE mon_db;
GRANT CREATE,INSERT ON mon_db.* TO monami;

A lightly more secure, but more awkward solution is to manually create the storage tables. The fol-
lowing SQL commands describe how to create a database mon_db, create an example table roomstats,
create a MySQL user account monami with password monami-secret, and grant that user suffi-
cient privileges to insert data only for that table.

 CREATE USER 'monami' IDENTIFIED BY 'monami-secret';
 CREATE DATABASE mon_db;
 CREATE TABLE roomstats (
 collected TIMESTAMP,
 temperature FLOAT,
 humidity FLOAT,
 aircon1good BOOLEAN,
 aircon2good BOOLEAN);
 GRANT INSERT ON mon_db.roomstats TO monami;

Fields

One must describe how to fill in each of the table's fields. To do this, the configuration should include
several field attributes, one for each column of the table.

A field attribute value has the form: field : metric path where field is the column name
in the MySQL database and metric path is the path within the datatree to the metric value.

The collected field

The collected field is a special case. It stores the timestamp of when the datatree data was obtained. The table must
have a column with this name with type TIMESTAMP. This field is filled in automatically: there is no need for a
field attribute to describe the collected field.

Configuring MonAMI

47

The following example shows a suitable configuration for storing gathered data within the above
room_stats table. The datatree is fictitious and purely illustrative.

[mysql]
 user = monami
 password = monami-secret
 database = mon_db
 table = room_stats
 field = temperature : probes.probe1.temperature
 field = humidity : probes.probe1.humidity
 field = aircon1good : aircons.aircon1.good
 field = aircon2good : aircons.aircon2.good

Attributes

host string, optional the host on which the MySQL server is running. If no host is
specified, the default localhost is used.

user string, required the username with which to log into the server.

password string, required the password with which to log into the server

database string, required the database in which the storage table is found. If this database
does not exist then no data can be stored.

table string, required the table into which data is stored. If the table does not exist,
it is created automatically.

field string, at least one a mapping between a metric from a datatree and a database field
name. This attribute should be specified for each table column
and has the form field : datatree path

3.5.9. Nagios
Nagios is a monitoring system that provides sophisticated service-status monitoring: whether a
service's status is OK, Warning or Critical. Its strengths include support for escalation and flexible
support for notification and potentially automated service recovery. A complete description of Nagios
is available at the Nagios home page [http://nagios.org/].

Figure 3.6. Nagios service status page showing two MonAMI-provided outputs.

The Nagios monitoring architecture has a single Nagios central server. This Nagios server maintains
the current status of all monitored hosts and the services offered by those hosts. It is the central Na-
gios server that maintains a webpage front-end and that responds to status changes. For remote hosts,
Nagios offers two methods of receiving status updates: active and passive.

Active queries are where the Nagios server initiates a connection to the remote server, requests infor-
mation, then processes the result. This requires a daemon (npre) to be running and a sufficient subset
of the monitoring scripts to be installed on the remote machine.

http://nagios.org/
http://nagios.org/

Configuring MonAMI

48

With passive queries, the remote site sends status updates to the Nagios server, either periodically
or triggered by some event. To receive these messages, the Nagios server must either run the nsca
program as a daemon, or run a inetd-like daemon to run nsca on-demand.

Caution

There is a bug in some versions of the nsca program. When triggered, nsca will go into a tight-loop, so preventing
updates and consuming CPU. This bug was fixed with version 2.7.2. Make sure you have at least this version
installed.

MonAMI will send status information to the Nagios server. This follows the passive query usage, so
nsca must be working for Nagios to accept data from MonAMI.

Nagios and nsca

This section gives a brief overview of how to configure Nagios to accept passive monitoring results
as provided by nsca. Active monitoring is the default mode of operation and often Nagios is deployed
with passive monitoring disabled. Several steps may be required to enable it. The information here
should be read in conjunction with the Nagios documentation [http://nagios.org/docs/]. Also, if nsca
is packaged separately, make sure the package is installed.

Location of Nagios configuration

The Nagios configuration files are located either in /etc or, with more recent packages, in /etc/nagios. It is
also possible that they may be stored elsewhere, depending on the local installation. For this reason, when Nagios
configuration files are mentioned, just their base name will be given rather than the full path.

To run nsca as part of an xinetd make sure there is a suitable xinetd configuration file (usually locat-
ed in /etc/xinetd.d). Some packages also include suitable configuration for xinetd, but usually
disabled by default. To enable nsca, make sure the disabled field within the nsca's xinetd-config-
uration file is set to no and restart xinetd.

To run nsca as part of inetd, add a suitable line to the inetd configuration file /etc/inetd.conf
and restart inetd.

To run nsca as a daemon, independent of any inetd-like service, make sure no inetd-like service has
adopted nsca (e.g., set disabled in the corresponding xinetd configuration file to yes, or com-
ment-out the line in inetd configuration) and start nsca as a daemon (e.g., service nsca start).

Passive monitoring requires that Nagios support external commands. The packaged default
configuration may have this switched off. To enable external commands, make sure the
check_external_commands parameter is set to 1. This option is usually located in the main
configuration file, nagios.cfg. Nagios will need to be restarted for this to have an effect.

Make sure Nagios can create the external command socket. The default location is within the /var/
log/nagios/rw directory. You may need to change the owner of that directory to the user the
Nagios daemon uses (typically nagios).

If there are problems with communication between MonAMI and nsca, the nsca debugging option
can be useful. Debugging is enabled by setting debug=1 in the nsca configuration file: nsca.cfg.
The debug output is sent to syslog, so which file the information can be found in will depend on the
syslog configuration. Typically, the output will appear in either /var/log/messages or /var/
log/daemon.

Adding passive services to Nagios

Nagios only accepts passive monitoring results for services it knows about. This section describes how
to add additional service definitions to Nagios so MonAMI can provide status information.

Nagios supports templates within its configuration files. These allow for a set of default service values.
If a service inherits a template, then the template values will be used unless overwritten. The following
section gives a suitable template for a MonAMI service; you may wish to change these values to better
suite your environment.

http://nagios.org/docs/
http://nagios.org/docs/

Configuring MonAMI

49

define service {
 name monami-service
 use generic-service
 active_checks_enabled 0
 passive_checks_enabled 1
 register 0
 check_command check_monami_dummy
 notification_interval 240
 notification_period 24x7
 notification_options c,r
 check_period 24x7
 contact_groups monami-admins
 max_check_attempts 3
 normal_check_interval 5
 retry_check_interval 1
}

Note how the active checks are disabled, but passive checks are allowed. Also, the
contact_groups has been set to monami-admins. Either this contact group must be defined,
or a valid group be substituted.

In the above template, a check_command was specified. Nagios requires this value to be set, but as
active checks are disabled, any valid command will do. To keep things obvious, we use the explicit
check_monami_dummy command. The following definition is valid and can be placed either in
commands.cfg or in some local collection of extra commands.

define command {
 command_name check_monami_dummy
 command_line /bin/true
}

The final step is to add the services Nagios is to accept status information. These definitions will
allow MonAMI to upload status information. The definitions should go within one of the Nagios
configuration files mentioned by cfg_file= in nagios.cfg.

The following two examples configure specific checks for a named host.

define service {
 use monami-service
 host_name grid01
 service_description TOMCAT_WEB_THREADS_CURRENT
}

define service {
 use monami-service
 host_name grid01
 service_description TOMCAT_WEB_THREADS_INUSE
}

The following example shows a service check defined for a group of hosts. Hosts acquire the service
check based on their membership of the hostgroup. This is often more convenient when several ma-
chines are running the same service.

define hostgroup {
 hostgroup_name DPM_pool_nodes
 alias All DPM pool nodes.
 members disk001, disk002, disk003, disk005, disk013
}

define service{
 use monami-service
 hostgroup_name DPM_pool_nodes
 service_description DPM_free_space
}

Configuring MonAMI

50

Configuring MonAMI

To allow MonAMI to report the current state of various services, one must configure a nagios reporting
target. This describes both the machine to which MonAMI should connect, and the services that should
be reported.

The host attribute describes the remote host to which status information should be sent. If no host
is specified, MonAMI will attempt to contact nsca running on the machine on which it is running
(localhost). The port attribute describes on which TCP port the nsca program is listening. If no
port is specified, then the nsca default port is used.

To be useful, each nagios target must define at least one service. Each service must have a corre-
sponding definition within Nagios (as described above), else Nagios will ignore the information. To
define a service, the service attribute is specified. The service values have the following form:
short name : Nagios name

short name a simple name used to associate the service with the various check attributes.

Nagios name the name of the service within Nagios. This is the service_description field
(as shown above). It is also the name the Nagios web interface will show.

Two example service definitions are given below. A nagios target can have an arbitrary number of
definitions.

service = tcat-threads, TOMCAT_WEB_THREADS_INUSE
service = tcat-process, TOMCAT_PROCESS

Given a service definition, one or more check attributes must be defined. The checks determine
the status (OK, Warning or Critical) of a service. The check values have the following form:
short name : data source, warn value, crit value

These fields have the following meaning:

short name the short name from the corresponding service definition.

data souce the path within a datatree to the metric under consideration.

warn value the first value that metric can adopt where the check is considered in Warning status.

crit value the first value that metric can adopt where the check is considered in Critical status.

When multiple check attributes are defined for a service, all the checks are evaluated and the
service adopts the most severe status. In order of increasing severity, the different status are OK,
Unknown, Warning Critical.

Examples of MonAMI configuration

The following is an example of a complete definition. A single service is defined that has a single
check, based on output from the nut plugin (see Section 3.4.10, “NUT”.

[nagios]
 service = ups-temp, Temperature
 check = ups-temp, nut.myups.ups.temperature, 25, 35

The status of Temperature depends on nut.apc3000.ups.temperature. If it is strictly less
than 25 Temperature has status OK. If 25 or more, but strictly less than 34 it has status Warning
and if 35 or greater it has status Critical.

Another example, again using output from the nut plugin.

Configuring MonAMI

51

[nagios]
 service = ups-volt, Mains
 check = ups-volt, nut.myups.input.voltage.instantaneous, 260, 280
 check = ups-volt, nut.myups.input.voltage.instantaneous, 210, 190

The Mains service is OK if the mains voltage lies between 210 V and 260 V, between 190 V and
210 V or between 260 V and 280 V its Warning and either less than 190 V or greater than 280 V its
considered Critical.

Attributes

host string, optional the hostname to which the reporting plugin should connect. The
default value is localhost.

port integer, optional the port to which the plugin should connect. The default value
is 5667, the default for nsca.

password string, optional the password used for this connection. Defaults to not using a
password.

service string, optional defines a service that is to be reported to Nagios. The format is
short name : Nagios name.

check string, optional defines a check for some service. A check is something that
can affect the status of the reported service. The format is
short name : data source, warning value,
critical value.

localhost string, optional defines the name the nagios plugin reports for itself when send-
ing updates. By default, the plugin will use the FQDN. Specify
this attribute if this is incorrect.

3.5.10. null
In addition to providing data (albeit, an empty datatree), the null plugin can also act as a reporting
plugin, but one that will discard any incoming data.

A null target will act as an information sink, allowing monitoring activity to continue without the
information being sent anywhere.

Attributes

The null plugin, used as a writer, does not accept any attributes.

3.5.11. SAM
The Service Availability Monitoring (SAM) is an in-production service moni-
toring system based in CERN. The GOC Wiki [http://goc.grid.sinica.edu.tw/gocwi-
ki/Service_Availability_Monitoring_Environment] describes SAM further. Also available is a web-
page describing the latest results [https://lcg-sam.cern.ch:8443/sam/sam.cgi].

The sam plugin allows information to be sent to a SAM monitoring host based on the methods de-
scribed in the GOC Wiki.

Note

This module will have no effect unless the tests are registered prior to running the code.

The CERN server is firewalled, so running tests may not result in immediate success.

This is work-in-progress.

http://goc.grid.sinica.edu.tw/gocwiki/Service_Availability_Monitoring_Environment
http://goc.grid.sinica.edu.tw/gocwiki/Service_Availability_Monitoring_Environment
http://goc.grid.sinica.edu.tw/gocwiki/Service_Availability_Monitoring_Environment
https://lcg-sam.cern.ch:8443/sam/sam.cgi
https://lcg-sam.cern.ch:8443/sam/sam.cgi

Configuring MonAMI

52

Attributes

VO string, required the VO name to include with reports.

table string, required the name of the table into which the data is to be added.

node string, optional the node name to report. This defaults to the machine's FQDN.

endpoint string, optional the end-point to which the reports should be sent. This defaults
to http://gvdev.cern.ch:8080/gridview/ser-
vices/WebArchiver

3.5.12. Snapshot
The snapshot reporting plugin stores a representation of the last datatree it received in a file. Unlike
the filelog plugin, snapshot provides no history information; instead, it provides a greater depth of
information about the last datatree it received.

Attributes

filename string, required the filename of the file into which the last datatree is stored.

3.5.13. R-GMA
R-GMA (Relational Grid Monitoring Architecture) is an information system that allows data to be
aggregated between many sites. It is based on the Open Grid Forum (formerly Global Grid Forum)
architecture for monitoring, Grid Monitoring Architecture. R-GMA uses a Producer-Consumer model,
with a Registry to which all producers register themselves periodically. Interactions with R-GMA are
through a subset of SQL. Further information on R-GMA is available from the R-GMA project page
[http://www.r-gma.org/] and the R-GMA in 5 minutes [http://www.r-gma.org/fivemins.html] docu-
ment.

A typical deloyment has a single R-GMA server per site (within WLCG, this is the MON box). Within
the R-GMA architecture, the producers are located within this R-GMA server. Local data is submitted
to the R-GMA server and held there. External R-GMA clients (R-GMA Consumers) contact the R-
GMA Producers to query the gathered data.

Locating the server

The rgma plugin allows MonAMI to upload data to an R-GMA server. Often this will not be the same
machine on which MonAMI is running, so MonAMI must either discover the location of the server
or use information in its configuration.

If the machine on which MonAMI is running has a properly installed R-GMA environment, it will
have a file rgma.conf that states which machine is the R-GMA server and details on how to send
the data. Unfortunately, this file can be located in many different locations, so its location must be
discovered too.

If the rgma_home attribute is specified, MonAMI will try to read the R-GMA configuration file
rgma_home/etc/rgma/rgma.conf.

If the rgma_home attribute is not specified, or does not locate a valid R-GMA configuration
file, several environment variables are checked to see if they can locate a valid R-GMA configu-
ration file. MonAMI will tries the environment variables RGMA_HOME, GLITE_LOCATION and
EDG_LOCATION, each time trying to load the file VAR/etc/rgma/rgma.conf.

If neither the rgma_home attribute nor any of the environment variables, if specified, can locate the
rgma.conf file, a couple of standard locations are tried. MonAMI will try to load /opt/glite/
etc/rgma/rgma.conf and /opt/edg/etc/rgma/rgma.conf.

http://www.r-gma.org/
http://www.r-gma.org/
http://www.r-gma.org/fivemins.html
http://www.r-gma.org/fivemins.html

Configuring MonAMI

53

If the file rgma.conf does not exist, the host and TCP port of the R-GMA server may be specified
explicitly within the configuration file. The attributes host, port and access state to which host,
on which port and how securely the connection should be made. Usually specifying just the host
is sufficient.

In summary, to allow the rgma plugin to work, you must satisfy one of the following:

1. have a valid rgma.conf file in one of its standard locations (/opt/glite/etc/rgma/ or /
opt/edg/etc/rgma/), or

2. make sure the MonAMI process has the correct RGMA_HOME, GLITE_LOCATION or
EDG_LOCATION environment variable set, or

3. specify the rgma_home attribute, locating the rgma.conf file, or

4. explicitly set one or more of the following attributes: host, port, access, or

5. run MonAMI on the same machine as the R-GMA server.

Sending data

The R-GMA system resembles a relational database with data separated into different tables. Each
table may have many columns, with data being supplied to any or all of those columns with one set
of data.

Each rgma target delivers data to a single R-GMA table. The table name must be specified and is
given by the table attribute. How data is delivered within that table is defined by column attributes.
Each column attribute defines a mapping between some metric within a datatree and an R-GMA
column name. The value of a column attribute has the form R-GMA column : metric name
[option, option], where metric name is the path to the metric within the datatree, the square
brackets are optional additional parameters. The following is a simple example that maps the metric
located at transfer.size in the datatree to the R-GMA column size.

column = size : transfer.size

The optional square brackets within the column attribute values contain options that adjust rgma's
behaviour for this data. These options are a comma separated list of keyword,value pairs, where the
following keywords are available:

maxsize The maximum length of a string metric. If a string metric would be too long for this
column, it is truncated so the last five characters are [...].

The following example configures MonAMI to send a string metric that is never longer than 255
characters; a string will be truncated if it is longer.

column = filename : downloaded.filename [maxsize = 255]

R-GMA query types

R-GMA supports four types of query: continuous, history, latest and static.

A continuous query of a table will return data whenever it is inserted into that table. All matching data
added to R-GMA will appear in a continuous query. It is possible to issue a continuous query that
includes all old data before waiting for new data. Although this will return historic data, there is no
guarantee for how long the R-GMA server will retain the data.

A reliable archive of the recent history of measurements or events is possible. A history query will
return all matching data still present, but with a defined retention policy. To be a candidate for history
queries, data must be marked for historic queries when it is inserted into a table. Any data not marked
will be ignored by history queries.

Configuring MonAMI

54

R-GMA also understands the concept of the “latest” result. An R-GMA latest query selects the most
recent measurement. However, to be considered, data must be marked as a candidate for latest queries
when added. Any data that is not so marked is ignored.

A static query is a query that uses R-GMA's support for on-demand monitoring. Currently, rgma has
no support for this query type.

When adding data, MonAMI will mark whether it should be considered for latest or historical queries
(or both). This is controlled by the type attribute, a comma-separated list of query-types for which
the data should be a candidate.

Data will always appear in continuous queries. By default, that is the only query type data will appear
in. If the type list contains history then data is marked for history queries and will also show up
in history queries. If it contains latest then it will also show up in R-GMA latest queries.

Storage and retention of data

Data can be stored on the R-GMA server in one of two locations: either in memory or within a database.
By default, data is stored in memory; however, the MonAMI storage attribute can specify where
R-GMA will store data. The valid values are memory and database (for storing in memory and
within a database, respectively).

Note

The current implementations of R-GMA support history- and latest- queries only when data is stored within a
database.

In general, data will be retained within R-GMA for some period. How long data is retained depends
on several factors. If the data is neither marked for history nor latest queries then the retention period
is not guaranteed.

The latest retention period is how long data is kept if it is marked for latest queries. R-GMA makes
no guarantee to expunge the data at that precise time. The MonAMI default value is 25 minutes. This
can be changed by setting the latest_retention attribute to the required duration, in minutes.
If the data is not marked (by the type attribute) for latest queries then this has no effect.

The history retention period is the period of time after data is added that it is retained for history
queries. R-GMA will guarantee to store for that period, but may retain it for longer. The MonAMI
default value is 50 minutes, but this value can be changed by setting the history_retention
attribute to the required duration, in minutes. If the data is not marked for history queries then this
has no effect.

Security

The R-GMA service can accept commands through either an insecure (HTTP) or secure (HTTPS)
connection. With the insecure connection, no authentication happens: anyone can insert data. Adding
data insecurely is the more simply and robust, but as anyone can send fake data it is not recommended.

With Public Key Infrastructure (PKI), a host proves its identity with credentials that are split into
two separate parts: one part is kept secret and the other is made public. The public part is the X509
certificate, which describes who the server claims to be and is signed by a trusted organisation. The
secret part is the host's private key. This file must be kept securely and is needed when establishing a
secure connection to verify that the server really is as claimed in the certificate.

When attempting to send data via a secure connection, the R-GMA server will only accepted connec-
tions established with a valid X509 certificate, one that the server can verify the complete trust-chain.
A valid X509 host certificate has a common name (CN) that is identical to the host's fully qualified
domain name (FQDN). To be useful, the certificate must have been issued by a certificate authority
(CA) that the R-GMA server trusts. Trust, here, is simply that the CA's own certificate appears within
the R-GMA server's CA directory (as specified within the R-GMA server's configuration).

Configuring MonAMI

55

The private key is precious: all security gained from using PKI depends on the private key being
kept secret. It is common practice to allow only the root user (and processes running with root
privileges) access to the private key file. However, many programs need to prove they are running on
a particular machine without running “as root”, so cannot access the private key directly. To allow
this, short-lived (typically 1 hour) certificates, called proxy certificates, are generated that are signed
by the host certificate. The signing process (and so, generating proxy certificates) requires access to
the host's private key. However, once generated, these short-lived certificates can have more liberal
access policies because, if stolen, they are only valid for a short period.

Unless the host's private key is directly readable (which is not recommended), MonAMI needs to
have access to a supply of valid proxy certificates so it can upload data to an R-GMA server securely.
To achieve this, an external script is run periodically (once an hour, by default) to generate a short-
lived proxy host certificate. Some MonAMI installations will have no X509-PKI files and no need to
upload data to R-GMA. Because of this, the script rgma-proxy-renewal.sh (in the directory /usr/
libexec/monami) is designed to fail quietly if there is no host key and no certificate installed
in their default locations (/etc/grid-security/hostkey.pem and /etc/grid-securi-
ty/hostcert.pem, respectively).

To generate a proxy certificate, the script will search for one of the proxy generating commands
(voms-proxy-init, lcg-proxy-init, ...) in standard locations. It will work “out of the box”
if it can find a suitable command. If it fails, or its behaviour needs to be adjusted, the file /etc/
sysconfig/monami should be edited to altered how the script behaves.

All the following options start RGMA_. To save space, the RGMA_ prefix is not included in the list
below; for example, the option listed as HOST_CERT is actually RGMA_HOST_CERT.

HOST_CERT The location of the host certificate, in PEM format. The default value
is /etc/grid-security/hostcert.pem

HOST_KEY The location of the host private key, in PEM format. The default value
is /etc/grid-security/hostkey.pem

HOST_PROXY_DIR The absolute path to the directory in which the proxy will be stored.
Any old proxy certificates within this directory will be deleted. The
default value is /var/lib/monami/rgma

HOST_PROXY_BASENAME The constant part of a proxy certificate filename. Proxy certificate file-
names are generated by appending a number to this basename. The de-
fault value is hostproxy and an example proxy certificate is host-
proxy.849

PROXY_RENEW_CMD The absolute path to an globus-proxy-init-like command. By
default, the script will look for one of several commands within several
standard locations. Unless the proxy generating command is located in
a non-standard location or is called something unusual, it is not neces-
sary to specify this option.

MONAMI_USER The user account MonAMI runs as. By default this is monami.

PERIOD How often the script is run (in hours). By default, this is 1 (i.e., one
hour). This variable controls only for how long a freshly made proxy
certificate is valid; to change the rate at which proxy certificates are
made, the cron entry (the file /etc/cron.d/monami-rgma) must
be altered to a corresponding value.

Dealing with failures

It is possible that, for whatever reason, an R-GMA server may not be able to receive data for a period
of time; for example, this might happen if the R-GMA server is down (e.g., for software upgrade) or

Configuring MonAMI

56

from network failures. If a rgma target is unable to send the data, it will store the data in memory and
attempt transmission later. Transmission of unsent data is attempted before sending new data and also
automatically every 30 seconds.

Storing unsent data uses memory, which is a finite resource on any computer. The default behaviour
on some computers is to kill programs that have excessive memory usage; those computers that do
not kill such programs outright will often “swap” memory to disk, resulting much poorer performance
of the computer overall.

To prevent an unavailable R-GMA server from adversely affecting MonAMI, a safety limit is placed
on how much unsent data is stored. If the length of the unsent data queue exceeds this limit then the
oldest data is thrown away to make space for the new data.

The default behaviour is to limit the backlog queue to 100 datatrees. How quickly this limit is reached
will depend on how fast data is sent to an rgma plugin. The backlog queue limit can be altered through
the backlog attribute, although a minimum backlog value of 10 is enforced.

Example usage

The following example configuration monitors the “myservice” processes every minute and records
the number that are in running (or runable), sleep and zombie states. The data is stored in the (fictitious)
R-GMA table myServiceProcessUsage. The table has three fields: running, sleeping and zombie. The
data delivered from the process target (srv_procs) is uploaded to the rgma target (srv_rgma)
and matches each of the three column names.

[process]
 name = srv_procs
 count = procs_running : myservice [state=R]
 count = procs_sleeping : myservice [state=S]
 count = procs_zombie : myservice [state=Z]

[sample]
 interval = 1m
 read = srv_procs
 write = srv_rgma

[rgma]
 name = srv_rgma
 table = myServiceProcessUsage
 column = running : srv_procs.count.procs_running
 column = sleeping : srv_procs.count.procs_sleeping
 column = zombie : srv_procs.count.procs_zombie

Attributes

table string, required the table name MonAMI will append data to.

column string, required the mapping between a MonAMI metric name and the corre-
sponding R-GMA column name. In general, there should be
a column attribute for each column in the corresponding R-
GMA table.

The column attribute takes values like:

rgma column : metric name [options]

where metric name is the path to some metric with-
in the datatree and options is a comma-separated list of
keyword,value pairs. If no options are needed, the square brack-
ets can be omitted.

Configuring MonAMI

57

rgma_home string, optional If the usual environment variables are not specified or do
not point to a valid rgma.conf file and rgma_home
has been specified, MonAMI will attempt to parse the file
rgma_home/etc/rgma/rgma.conf for details on how to
contact the R-GMA server.

host string, optional the host to which MonAMI should connect for submitting da-
ta. Default value is localhost. It is recommended that this
value is only used if you do not have an rgma.conf file.

port integer, optional the TCP port to which MonAMI should connect when submit-
ting data. Default value is 8080 when connecting insecurely
and 8443 when connecting securely.

access string, optional this attribute will determine whether to use SSL/TLS-based
security when connection to the R-GMA server. A value of
secure will result in attempting SSL/TLS-based mutual au-
thentication; a value of insecure will use an insecure HTTP
transport. By default, secure access will be used.

type string, optional a comma-separated list of R-GMA queries for which the data
should be a candidate. Added data will always show up during
continous queries. Specifying history will mark the data so
it is also a candidate for history queries. Similarly, specifying
latest marks data so it is also a candidate for latest queries.

storage string, optional the type of storage to request. This can be either memory or
database. The default value is memory.

latest_retention integer,
optional

when inserting data that is marked for “latest” queries, this is
the period of time after data is added that it is guaranteed to be
present. The value is in minutes, the default value is 25 minutes.

history_retention integer,
optional

when inserting data that is marked for “history” queries, this is
the period of time after data is added that it is guaranteed to be
present. The value is in minutes, the default being 50 minutes.

backlog integer, optional The maximum length of the unsent data queue whilst waiting
for an R-GMA server. If the backlog of datatrees to send to an
R-GMA server exceeds this value, then the oldest datatree is
thrown away. The default value is 100 with a minimum value
of 10 being enforced.

3.6. sample
The configuration file can have one or more sample targets (or sample for short). A sample target
aggregates information collected from one (or more) targets. The aggregated data is then sent off to one
(or more) targets. The targets do this based on either the current time or when another target requests
the data. Generally speaking, you want at least one sample target in MonAMI configuration files.

3.6.1. The read attribute
The read attribute describes from which monitoring targets a sample target should get its data. In
its simplest form, this is a comma-separated list of monitoring targets. When fresh data is needed,
the sample target will acquire data from all the named targets and aggregate the data. The following
example takes data from a mysql and apache target.

[mysql]
 user = monami

Configuring MonAMI

58

 password = not-very-secret

[apache]
 name = my-apache

[sample]
 read = my-apache, mysql

Data is made available in a tree structure. sample targets can select parts of the datatree rather than
taking all available data. Parts of a datatree are specified by stating the path to the metric or branch
of interest. A dot (.) is used to separate branches within the datatree. Also, parts of the tree can be
excluded by prefixing an entry with the exclamation mark (!).

In the following example, the sample target takes the threads data from the my-apache target,
but not the number of threads in keep-alive state. The sample also aggregates data from the mysql
target's “uptime” value.

[mysql]
 user = monami
 password = not-very-secret

[apache]
 name = my-apache

[sample]
 read = my-apache.Threads, !my-apache.Threads.keep-alive, \
 mysql.uptime

3.6.2. Timed sample targets
Timed samples are sample targets that have an interval attribute specified. Specifying an in-
terval will result in MonAMI attempting to gather data periodically. This is useful for generating
graphs or “push”ing data to reporting targets, such ganglia (see Section 3.5.3, “Ganglia”) or filelog
(see Section 3.5.1, “filelog”).

The interval value specifies how long the sample section should wait before requesting fresh data.
The time is given in seconds by default or as a set of qualified numbers (an integer followed by a
multiplier). Following a number by s implies the number is seconds, m implies minutes, h implies
hours, d implies days and "w" implies weeks.

Here are some examples:

interval = 5 every five seconds,

interval = 5s every five seconds,

interval = 2m every two minutes,

interval = 3h 10s every three hours and 10 seconds.

When triggered by the timer, the sample target collects data and sends the aggregated data to one or
more reporting targets. The write attribute is a comma-separated list of reporting targets to which
data should be sent.

The following example records the number of threads in each state in a log file every 2 minutes.

[apache]

[sample]
 interval = 2m
 read = apache.Threads
 write = filelog

[filelog]

Configuring MonAMI

59

 file = /tmp/output

3.6.3. Named vs Anonymous samples.
As with monitoring and reporting targets, a sample target can be assigned a name using the name
attribute. These sample targets are named samples. If no name is specified then the sample is an
anonymous sample. As with all other targets, named samples must have names that are unique and
not used by any other target.

However, unlike named monitoring and reporting targets, it is OK to have multiple anonymous (un-
named) sample targets. Anonymous samples are given automatically generated unique names. Al-
though it is possible to refer to an anonymous sample by its generated name, the form of these names
or the order in which they are generated is not guaranteed. Using an anonymous sample's generated
name is highly discouraged: don't do it!

Named samples can be used as if they were a monitoring target. When data is requested from a named
sample, the sample requests data from its sources and returns the aggregated information. The follow-
ing example illustrates this.

[mysql]
 user = monami
 password = something-secret

[apache]

[sample]
 name = core-services
 read = apache, mysql
 cache = 60s

[sample]
 interval = 60s
 read = core-services
 write = filelog

[filelog]
 file = /tmp/output

3.6.4. Adaptive monitoring
Adaptive monitoring is a form of internally-triggered monitoring that is not necessarily periodic. Un-
der stable conditions, adaptive monitoring will be periodic; however, if the monitored system takes
increasingly longer to reply (e.g., suffers increased load), adaptive monitoring will adjust by request-
ing data increasingly less often.

Overview

Fixed-period monitoring (e.g., monitoring once every minute) is commonly used to monitor services.
This data can be plotted on a graph to show trends in activity, service provision, resource utilisation,
etc. It can also be recorded for later analysis. It also allows status information (e.g., number of con-
nected) to be converted into event-based information (e.g., too many connections detected) within a
guaranteed maximum time.

When monitoring a service, the data-gathering delay (between the monitored system receiving a re-
quest for the current status and delivering the data) should be small compared to the time between
successive requests. If you are asking a database for its current status once every minute, it should not
take this database 50 seconds to reply! There are two reasons why this is important:

First, it is important that the monitored system is not overly affected by MonAMI. There may be no
way of knowing whether an observed large data-gathering delay is due to MonAMI; but whatever the
cause, it suggests that MonAMI should not be monitoring so frequently.

Configuring MonAMI

60

Second, MonAMI has no idea whether the data-gathering delay occurred before the service recorded
its current state or after. If the size of this uncertainty is about the same size as the sample's interval,
then there's little point sampling this often.

Rather than maintaining a constant sampling period (e.g., once every minute), adaptive monitoring
works by maintaining a constant duty-cycle. The duty-cycle is the percentage of the period spend
“working”. If an activity is repeated every 40 seconds with the system active for the first 10 seconds
the duty cycle is 25%; if the situation changes so it's now active for 30s every 40s then the duty cycle
will have increase to 75%.

Whenever MonAMI acquires data from a monitored service, it keeps a record of how long it took to get
the monitoring data. It uses that information to adjust an estimate of how long the next data acquisition
will take. The process is described in Section 3.3.4, “Estimating future data-gathering delays”. This
estimate, along with the desired sampling period allows MonAMI to estimate the duty-cycle of the
next sample. MonAMI can then adjust the sampling period to try to keep this close to the desired
duty-cycle.

In addition to the desired duty-cycle, there are two other parameters that affect adaptive monitoring:
a lower- and upper- bound on the delay.

The lower-bound on the delay is the smallest delay between successive requests MonAMI will allow.
If a service is so lightly loaded that it is responding almost instantaneously then the lower-bound limit
will prevent MonAMI from sampling too fast. The interval attribute gives the lower-bound when
MonAMI is adaptively sampling.

The upper-limit is the largest delay between successive requests: the adaptive monitoring will not
sample less frequently that this limit. This is useful should, for whatever reason, a service takes an
anomalously long time to reply. Without an upper-limit, MonAMI would adjust the sampling interval
to compensate for this anomalous delay and might take an arbitrarily long time to return to a more nor-
mal sampling period. The sample's limit attribute provides this upper-limit to adaptive monitoring.

Adaptive monitoring as a safety feature

Figure 3.7. Adaptive monitoring increasing sampling interval in response to
excessive server load.

Adaptive mode is enabled by default with a target duty-cycle of 50%. This is meant as a safety feature
and anticipates that the observed duty-cycle, under normal conditions, will be less than 50%: if sam-
pling once every minute, we expect gathering of data to take less than 30 seconds.

Whilst the duty-cycle is low, MonAMI will conduct periodic sampling; however, should the measured
duty-cycle exceed the 50% limit, the monitoring will switch into an adaptive mode and MonAMI will
sample less often. This could be due to any number of reasons; but, once the system has recovered
and the duty-cycle has dropped to below the 50% limit, MonAMI will switch off the adaptive timing
and resume periodic monitoring.

If MonAMI switches to adaptive monitoring too often then the 50% target may be too low or the
sample interval is set too small. Either sample less often (increase the interval attribute) or set an
explicit dutycycle attribute value greater than 50%. Specifying a dutycycle value of zero will
disable adaptive mode, and so enforce periodic monitoring.

Configuring MonAMI

61

There is currently no support within MonAMI for extending the adaptive monitoring support to include
on-demand monitoring flows. This is because none of the currently available on-demand reporting
systems provide the facility to indicate that they should sample less frequently.

Adaptive monitoring by default

If a sample target's dutycycle attribute is set to a desired duty-cycle and the interval attribute
value is set sufficiently small then the sample will operate in adaptive mode by default. Adaptive
monitoring is then elevated from a safety feature to being the normal mode of operation for this sample
target.

If no interval is set, a default interval value of one second is used. This places a lower-bound on
the sampling frequency: MonAMI will not attempt to monitor more frequently than once per second.

Adaptive monitoring has strengths and weaknesses compared to periodic monitoring. There is greater
certainty that the monitoring is not overly affecting your monitored systems. However, adaptive mon-
itoring is a new feature. Support within the various reporting systems for this mode of operating will
vary, and analysing the resulting data is more complex.

3.6.5. Sample attributes
In summary, each sample section accepts the following options:

interval period, optional specifies how often data should be collected. The format is a se-
ries of numbers, optionally qualified, separated by white space,
for example 1h 2m 30s would repeat every 1 hour, 2 minutes
and 30 seconds. Seconds is assumed if no qualifier is specified.
The total interval is the sum of all numbers present.

If no interval and no duty-cycle is specified, the sample will
never trigger data acquisition. Instead it will act as an aggrega-
tor of data, requesting data only on-demand.

If a dutycycle attribute is specified, the interval at-
tribute specifies a lower-bound on the sampling period during
adaptive mode monitoring. If no interval is specified, a de-
fault lower-bound of one second is used. Setting an inter-
val of zero permits arbitrarily short sample periods (not rec-
ommended).

read string, required a read string specifies which sources to query and which infor-
mation to report back. The format is a comma-separated list of
definitions. Each definition is either a target name or a target
name, followed by a period (.), followed by the name of some
part of that target's datatree. If only the target is specified, the
whole datatree is referred to; if the part of the datatree referred
to is a branch-node, then any data below that branch is referred
to. Any definition can be negated by starting with an exclama-
tion mark (!), which makes sure that element is not included
in the report. For example:

foo, bar, !bar.unimportant, baz.important

would include all data from foo, all from bar except that with-
in the bar.unimportant branch, and data from baz con-
tained within the important branch. The names foo, bar
and baz are either defined by some target's name attribute, or
the default name taken from the target's plugin name.

Configuring MonAMI

62

write string, optional a comma-separated list of targets to whom the collected infor-
mation will be sent. This attribute must be specified if the sam-
ple is internally triggered (either interval or dutycycle
attributes are set).

dutycycle percent, optional the desired or threshold duty-cycle value for monitoring using
adaptive mode. MonAMI will measure and adjust the sampling
period to keep the measured duty-cycle less than or equal to
this value. Upper- and lower-bounds will prevent sampling too
infrequently or too often. If the interval attribute is speci-
fied but dutycycle is not, a default value of 50% is used.

limit period, optional The upper limit to the sampling period for adaptive monitor-
ing. MonAMI will never sample less frequently that this. If not
specified, a default value is used. The default value is twenty
times the interval attribute, if specified, or twenty minutes if
not.

3.7. Configuring Event-based Monitoring
Some monitoring involves capturing that a particular activity happened, when it happened and some
metadata associated with the activity. A concrete example of event monitoring is watching file trans-
fers from a web-server: one might wish to monitor for requests for missing files (404 HTTP sta-
tus-code) to be alert to some broken part of a web-site. One might also look for which parts of a website
are under heavy load, so to better load-balance the operation.

With any event there is some associated metadata. For a web request, this metadata includes the web-
browser's User-Agent string, the browser's hostname (or IP address), how much data was transferred,
etc. Within MonAMI, this information is presented as a datatree. Events are merely new datatrees that
can be directed to one (or more) reporting targets.

A monitoring target that provides events typically will split those events into separate channels. The
channels form a hierarchy of different activity. For example, an apache target can be configured to
provide events based on HTTP requests the Apache server receives. These events can be provided as
the access channel. Events from the access channel can be further divided into events from the
access.1xx, access.2xx, access.3xx and access.4xx channels based on the resulting
HTTP status-code. The access.4xx channel is further subdivided based on the actual code, so into
access.4xx.401, access.4xx.402 and so on.

3.7.1. dispatch
The dispatch targets describe which events are to be monitored, what information is to be send and to
which reporting targets the information is to be sent. Event monitoring works using a subscription mod-
el. The dispatch target subscribes to one or more channels to receive events that match. A dispatch that
subscribes to a branch (within a channel hierarchy) will receive all events that match any of the more-
specific events: subscribing to access.4xx will receive events on channel access.4xx.401,
access.4xx.402, access.4xx.403, and so on.

When receiving a datatree, the dispatch can select some subset of the available data. Each event might
have a large amount of information that, in some particular case, is not needed. The select attribute
specifies which data is needed. It uses the same format as the sample target's read attribute (see
Section 3.6.1, “The read attribute”).

Finally, a dispatch section must specify to which reporting target the datatree is to be sent. The send
attribute contains a comma-separated list of reporting targets to which the data should be sent.

A simple example is:

[apache]

Configuring MonAMI

63

 log = access: /var/log/apache/access.log [combined]

[dispatch]
 subscribe = apache.access.4xx.404
 select = apache.user-agent
 send = apache-404-useragent-log

[filelog]
 name = apache-404-useragent-log
 filename = /tmp/monami-apache-ua.log

3.8. Example configurations
The following section contains some example configurations. The first three examples show examples
of the three data-flows: on-demand, polling and event monitoring. The fourth example shows a more
complicated example, which includes all three monitoring flows.

For simplicity, all examples are presented as a single file. This file could be /etc/monami.conf,
or (with the default configuration) some file within the /etc/monami.d/ directory. With complex
configuration, the monitoring targets, reporting targets, and sample or dispatch targets may be in sep-
arate files (as described in Section 3.2.3, “Auxiliary configuration file directories”). However the con-
figuration is split between files, provided the targets are defined the examples will work.

3.8.1. On-demand monitoring example
This example shows how to configure MonAMI to monitor multiple targets: a local MySQL database,
a local and remote Apache webservers with KSysGuard. The sample acts as an aggregator, allowing
KSysGuard to see all three monitoring targets.

The results are cached for ten seconds by the sample target. This prevents the KSysGuard target from
sampling too fast, whilst allowing other (undefined, here) monitoring activity to continue at faster
rates.

Our local MySQL instance
[mysql]
 user = monami
 password = monami-secret

Our local Apache server
[apache]
 name = apache-test

A remote Apache server
[apache]
 name = apache-public
 host = www.example.com

Put together monitoring targets for ksysguard.
[sample]
 name = ksysguard-sample
 read = apache-test, apache-public, mysql
 cache = 10

[ksysguard]
 read = ksysguard-sample

3.8.2. Polling monitoring example
The following example configuration has MonAMI recording the Apache server's thread usage and a
couple of MySQL parameters. The results are sent to Ganglia for recording and plotting. The Apache
and MySQL monitoring occur at different rates (30 seconds and 1 minute respectively).

Configuring MonAMI

64

Our local apache server
[apache]

Our database
[mysql]
 user = monami
 password = monami-secret

Every 30 seconds, send current thread usage to our internal
ganglia.
[sample]
 interval = 30
 read = apache.Threads
 write = internal-ganglia

Every minute, send some basic DB usage stats
[sample]
 interval = 1m
 read = mysql.Network.Connections.current, \
 mysql.Execution.Open.tables.current
 write = internal-ganglia

Ganglia, making sure we send data to an internally connected NIC.
[ganglia]
 name = internal-ganglia
 multicast_if = eth1

3.8.3. Event monitoring example
The following example shows event-based monitoring. The apache target is configured to watch the
access log file, which contains a log of accesses to the “public” virtual host.

The dispatch subscribes to those transfer requests that result in a HTTP 404 error code (“file not
found”). Of the available datatree, only the referrer and user-agent are selected for forwarding to the
public-404-logfile filelog target.

Our local apache server
[apache]
 log = public_access : /var/log/apache/public/access.log [combined]

Subscribe to those 404 events, sending them to the filelog
[dispatch]
 subscribe = apache.public_access.4xx.404
 select = referrer, user-agent
 send = public-404-logfile

Log these results.
[filelog]
 name = public-404-logfile
 filename = /var/log/apache/public/404.log

3.8.4. A more complex example
The following example combines all three previous monitoring flows in a single configuration file.
Graphs of Apache thread usage and MySQL database statistics are produced with Ganglia, HTTP re-
quests that result in a 404 error code are recorded and KSysGuard can connect to MonAMI (whenever
the user decides) allowing more detailed monitoring either of the Apache or MySQL services.

Although this example groups similar sections together, this is mainly for readability: the order in
which the targets are defined does not matter, and may be split over several files (see Section 3.2.3,
“Auxiliary configuration file directories”).

##
Reader targets: sources of information.

Configuring MonAMI

65

##

[mysql]
 user = monami
 password = monami-secret

[apache]
 log = public_access : /var/log/apache/public/access.log [combined]

##
Samples
##

Every 30 seconds, send current thread usage to our ganglia.
[sample]
 interval = 30
 read = apache.Threads
 write = ganglia

Every minute, send some basic DB usage stats
[sample]
 interval = 1m
 read = mysql.Network.Connections.current, \
 mysql.Execution.Open.tables.current
 write = ganglia

Put together monitoring targets for ksysguard.
[sample]
 name = ksysguard-sample
 read = apache, mysql
 cache = 10

##
Dispatches: directing events to writer targets.
##

Subscribe to those 404 events, sending them to the filelog
[dispatch]
 subscribe = apache.public_access.4xx.404
 select = referrer, user-agent
 send = public-404-logfile

##
Writer targets: those that accept data.
##

Log for any 404s
[filelog]
 name = public-404-logfile
 filename = /var/log/apache/public/404.log

Listen for ksysguard requests for data.
[ksysguard]
 read = ksysguard-sample

Ganglia, making sure we send data to an internally connected NIC.
[ganglia]
 name = internal-ganglia
 multicast_if = eth1

66

Chapter 4. Security
When running any software some consideration must be made towards the security impact of that
software. MonAMI, like any software, will have an effect on a machine's security risk. This section
aims to give a brief overview of the likely security risks and what can be done to to reduce them.

4.1. General comments
It is worth pointing out that running MonAMI does not, in and of itself, provide any greatly increased
security risk. There are no known vulnerabilities in the software and the dangers described here are
common for any software that attempts the monitoring activity MonAMI undertakes.

Although this section gives information on running MonAMI it is not, nor can it be, exhaustive. Many
of the security issues will arise from site-specific details so a full analysis can only be done in knowl-
edge of the MonAMI configuration in use along with other factors: technical factors (firewalls, net-
work topology, information storage configuration, ..), usage policies (who else uses the machines
MonAMI runs on?) and other issues ("what information is considered secret?").

Security as a process, not a check list.
One cannot express security as solely a list of things to check or actions to undertake; this includes
the comments in this section. Best-practice (once established) is a guide: a minimal set of activities
or configuration. There will always be aspects too general (e.g. management processes) or too site-
specific (e.g. has software X been configured with option Y disabled) to be included within best-
practice. Security will always require thinking, not just following procedure.

Security in depth.
One cannot rely on any one technology or process to fully protect a site. Limitations in software (or
understanding of that software) may lead to a vulnerability in what is thought to be a perfectly protected
system. Moreover, local policies might require running software so there are additional vectors of
attack: risks might have to be balanced against inconvenience.

An effective way of reducing the impact of security exposure is to provide multiple barriers one must
penetrate before a system is compromised. Although each barrier may be imperfect, each will provide
a sufficient challenge that either the attacker will give up (and look for an easier target) or the attack
is discovered and counter-measures taken.

To illustrate this, consider the mysql monitoring plugin (Section 3.4.8, “MySQL”). This plugin needs
a MySQL account with which it can log into the database server. The login credentials could be any
valid MySQL user. Although strongly discouraged, this could be the MySQL root user, which has all
administrative privileges.

Whatever MySQL user is used, one would try to ensure no one can discover the username-password
pair. But, if MonAMI is using a MySQL user with no unnecessary privileges, should someone discover
the username-password pair they would gain little without subsequently defeating the user-privilege
separation within the MySQL server. The barriers they would have to overcome would be:

1. gaining access to the machine (presumably as some user other than user monami)
2. defeating the server's file-system permissions (to read the MySQL password)
3. defeat the MySQL server permissions (to gain privileges)

Each barrier is formidable yet potentially vulnerable (either through software bug or from being mis-
configured). Together, the steps required to obtain full access to the database is much harder, suffi-
ciently hard that an attacker would most likely use some other route.

Security

67

4.2. Risks arising from running MonAMI
This section describes some explicit risks that one encounters when running MonAMI. For each sec-
tion, there are a few suggested things to check. The checks are hopefully straightforward; verifying
these items should greatly reduce the risk.

As stated earlier, a list of checks should not be confused with having a secure system. Following best
practise should eliminate or greatly reduce the impact of these risks, but the user should be aware of
them and plan accordingly.

4.2.1. Information distributed too readily.
Sending out information is MonAMI's modus operandi. However, some information is dangerous or
sensitive.

Information might be sensitive for any number of reasons. Monitoring might give an indication of
capacity or utilisation, or the broad direction in which activity is going. Such information might be
sensitive for business. Thieves might target rooms in which computers have been idle for some time.

Dangerous information is not sensitive now, but might be sensitive in the future. Information that
indicates which software and software version is being run could be correlated against databases of
known vulnerabilities. Distributing software version numbers is the most obvious example of this, but
other information might indicate which software is being run.

Check that...

a. information being sent is not sensitive,
b. the information systems are sufficiently secure,
c. no information that might identify which version of some software is being run is distributed where

it might be discovered.

4.2.2. Passwords being stored insecurely
The danger here is that someone discovers the username-password pair needed to gain access to some
system. The most likely cause is inappropriate file-system permissions.

Using the "security in depth" concepts, passwords should be created with limited functionality, ideally
with only sufficient privileges to retrieve monitoring information.

Many password-based authentication systems have the option of restricting from which hosts it will
accept credentials. By limiting login via monitoring credentials to be only from the MonAMI host
(which is perhaps "localhost"), any stolen username-password pair is useless unless the MonAMI host
is also compromised.

Check that...

a. the MonAMI configuration files are owned by user monami and have read-only permission for that
user and no read permission for anyone else.

b. that user-password pairs used by MonAMI have limited functionality and (ideally) are not shared
with other users.

c. wherever possible, the monitoring username-password pair should be restricted so it only functions
from the machine on which MonAMI is running.

4.2.3. A bug in MonAMI is exploitable
Any software can have bugs; MonAMI is no exception. Bugs range from the annoying (doesn't work
as specified) through to the dangerous. Perhaps the most dangerous is if, through MonAMI, a remote
user can control files or run commands on the local machine.

Security

68

Although there are no known bugs in MonAMI, it is prudent to assume they exist and to reduce the
impact of them. For this reason, MonAMI supports "dropping root privileges" to switch to running as
some other user. We recommend that this feature be used and the other user be distinct (i.e. not to use
some generic user "daemon" or "nobody"). Someone exploiting MonAMI (should that be possible),
would then only gain the use of an unprivileged user.

To achieve monitoring activity, certain MonAMI configurations accepts some network traffic. Wher-
ever possible, the traffic to MonAMI should be firewalled. Only network traffic from trusted machines
can reach MonAMI.

Check that...

a. the monamid process is running as an unprivileged user,
b. the unprivileged user cannot cause trouble,
c. network traffic to MonAMI's ports is sufficiently protected; for example, it passes through a suitably

configured firewall.

4.2.4. MonAMI tricked into providing a Denial-of-Ser-
vice attack

Monitoring impacts on the service that is to be monitored. If MonAMI is run such that it attempts to
gather information with high frequency, then it might impact strongly on the service, even providing
a denial-of-service attack.

If properly configured, monitoring that is triggered internally (see Section 3.6.2, “Timed sample tar-
gets”) should pose no problem. On-demand monitoring (for example, the ksysguard plugin, Sec-
tion 3.5.6, “KsysGuard”) could potentially request monitoring data sufficiently quickly to saturate
MonAMI-core. This might lead to problems with MonAMI and the services being monitored. To re-
duce this, suitable caches can be defined (see Section 3.3.2, “The cache attribute”) and access to on-
demand monitoring should be limited through correctly configured firewalls.

Check that...

a. suitable cache values are specified, especially for any on-demand monitored targets.
b. any on-demand monitoring network port is suitably protected; for example, by using a suitably

configured firewall.
c. the MonAMI configuration files are not world-writable and that any auxiliary configuration direc-

tories (as defined in a config_dir attribute) does not permit normal users to write additional
monitoring configuration.

69

Chapter 5. Further Information
There are a number of sources for further information:

• The MonAMI website [http://monami.sourceforge.net/] contains up-to-date information about mon-
itoring and reporting plugins

• The MonAMI blog [http://monami-at-large.blogspot.com/] has comments and ideas on monitoring.

• There are various mailing lists for the MonAMI community.

monami-announce a very low volume list for people want to know about future re-
leases of MonAMI. To subscribe, visit the mailman page [https://
lists.sourceforge.net/lists/listinfo/monami-announce].

monami-users a list for people who are using MonAMI. To subscribe, visit the mailman
page [https://lists.sourceforge.net/lists/listinfo/monami-users].

monami-devel a list for people who are working on improving MonAMI. To subscribe,
visit the mailman page [https://lists.sourceforge.net/lists/listinfo/mona-
mi-devel].

Please send feedback about this document (including any omissions or errors) to the developers' mail-
ing list.

http://monami.sourceforge.net/
http://monami.sourceforge.net/
http://monami-at-large.blogspot.com/
http://monami-at-large.blogspot.com/
https://lists.sourceforge.net/lists/listinfo/monami-announce
https://lists.sourceforge.net/lists/listinfo/monami-announce
https://lists.sourceforge.net/lists/listinfo/monami-announce
https://lists.sourceforge.net/lists/listinfo/monami-users
https://lists.sourceforge.net/lists/listinfo/monami-users
https://lists.sourceforge.net/lists/listinfo/monami-users
https://lists.sourceforge.net/lists/listinfo/monami-devel
https://lists.sourceforge.net/lists/listinfo/monami-devel
https://lists.sourceforge.net/lists/listinfo/monami-devel

	MonAMI v0.10 User Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. MonAMI architecture
	1.2. The three monitoring flows
	1.3. Datatrees

	Chapter 2. Running MonAMI
	2.1. Options for monamid
	2.2. Testing a configuration
	2.3. Running in production environment
	2.4. Running from within the CVS tree

	Chapter 3. Configuring MonAMI
	3.1. Structure of a configuration file.
	3.2. The [monami] stanza.
	3.2.1. Logging Messages from MonAMI
	3.2.2. Dropping root privileges
	3.2.3. Auxiliary configuration file directories
	3.2.4. Attributes

	3.3. Features common across plugins
	3.3.1. The name attribute
	3.3.2. The cache attribute
	3.3.3. The map attribute
	3.3.4. Estimating future data-gathering delays

	3.4. Monitoring Plugins
	3.4.1. AMGA
	3.4.2. Apache
	3.4.3. dCache
	3.4.4. Disk Pool Manager (DPM)
	3.4.5. Filesystem
	3.4.6. GridFTP
	3.4.7. Maui
	3.4.8. MySQL
	3.4.9. null
	3.4.10. NUT
	3.4.11. Process
	3.4.12. Stocks
	3.4.13. TCP
	3.4.14. Tomcat
	3.4.15. Torque
	3.4.16. Varnish

	3.5. Reporting plugins
	3.5.1. filelog
	3.5.2. FluidSynth
	3.5.3. Ganglia
	3.5.4. GridView
	3.5.5. grmonitor
	3.5.6. KsysGuard
	3.5.7. MonALISA
	3.5.8. MySQL
	3.5.9. Nagios
	3.5.10. null
	3.5.11. SAM
	3.5.12. Snapshot
	3.5.13. R-GMA

	3.6. sample
	3.6.1. The read attribute
	3.6.2. Timed sample targets
	3.6.3. Named vs Anonymous samples.
	3.6.4. Adaptive monitoring
	3.6.5. Sample attributes

	3.7. Configuring Event-based Monitoring
	3.7.1. dispatch

	3.8. Example configurations
	3.8.1. On-demand monitoring example
	3.8.2. Polling monitoring example
	3.8.3. Event monitoring example
	3.8.4. A more complex example

	Chapter 4. Security
	4.1. General comments
	4.2. Risks arising from running MonAMI
	4.2.1. Information distributed too readily.
	4.2.2. Passwords being stored insecurely
	4.2.3. A bug in MonAMI is exploitable
	4.2.4. MonAMI tricked into providing a Denial-of-Service attack

	Chapter 5. Further Information

