MonAMI v0.10 User Guide
Paul Millar

MonAMI v0.10 User Guide
Paul Millar

Table of Contents

IO | oo [0 (o o I ORI 1
1.1 MONAMI @ ChItECIUIEevieeeeii e e e e e e eeeaa e eees 1
1.2. The three monitoring fIOWSiiiiii e 2
R B L - 1= = PP PPTPPTI 3
2. RUNNING MONAMI .o e e e e e e e e e et e e et e e eanaaees 5
2.1. Options fOr MONAMITccueiii e e e e e e e e e e e e eanaees 5
AV == ([aTo = Weo 01 Te 8= 1 o] i P 5
2.3. Running in production eNVIrONMENtoeviuieiiieei e e e e e e aaas 5
2.4. Running from within the CVSHIeecovviiiii e 6
3. Configuring MONAMI L..cuu e e e 7
3.1. Structure of a configuration fil€.cocouiiiiiiiii 7
3.2. The [MDNAMT] SANZA. ...uuiiiiiieeii e e e e e e e e eaes 7
3.3. Features common aCroSS PIUGINSvvvniiii e e e e e e e 10
3.4. MONItOring PIUGINSoiiiciii e e e e e e e e eaes 14
3.5. REPOIING PIUGINS ...oviieiii e e e e e e e e e e e e eeeen 31
G0 100 = N 57
3.7. Configuring Event-based MONItOrNGvvvunieiiiiiiii e 62
3.8. Example configurationsccceuuieiiieiii e e 63
S o 1 1 66
A1, GENEral COMMENES .uuueeiiii et e et e e et e et e e e et e e e et e e e e e bb e e e eran s 66
4.2. Risks arising from running MONAMIoviiiiii e 67
5. FUrther Informationoouuiiiiiii e 69

List of Figures

1.1. ustration of MONAMI @rChiteCtUIEuiiiiiiii e 2
1.2. lllustration of the three data fIOWSccoovuiiiiiiii e 3
3.1. Data from DPM displayed within Ganglia.ccooeeiiiiiiiiiin e 17
3.2. Ganglia graphs showing data from dpm and tCp targetSoevviviiiiiiiii e 35
3.3. gr_Monitor showing data from apache and mysgl targetS........ccovvveiiiiiiiiciii i, 39
3.4. KSysGuard showing data from the nut plugincooiiiiiiiiii e 42
3.5. Example deployment with key elements of MONALISA shown.cccoceiviiiiiviinenins 45
3.6. Nagios service status page showing two MonAMI-provided OUtpULS.ccevvveveineeennnnns 47
3.7. Adaptive monitoring increasing sampling interval in response to excessive server load....... 60

Chapter 1. Introduction

This document describes how to configure and run MonAMI: a universal sensor infrastructure. Fol-
lowing the Unix philosophy, it aimsto do a simple job well. That job isto move monitoring informa-
tion from a service into a monitoring system. It does not attempt to store monitoring information or
display (graphically) the data, as other systems exist that already do this. Rather, it aimsto interface
well with existing software.

To understand how MonAMI may be configured, a brief introduction to the underlying ideas of Mon-
AMI must be given. This introduction chapter will give an overview of how MonAMI allows mon-
itoring information to flow. This is important as later chapters (which describe specific aspects of
MonAMI) may be confusing without a clear understanding of the “big picture.”

It isworth stressing at this stage that monitoring is a more involved process than merely periodically
collecting data. Without a clear understanding of this, MonAMI may appear superfluous!

In essence, MonAMI alowsthe collection of information from one or more services. Thisinformation
isthen sent off, perhaps to some data storage or to be displayed within some monitoring software. This
gathering of information can betriggered by MonAMI internally or from an external agent, depending
on how MonAMI is configured.

1.1. MonAMI architecture

MonAMI has two parts: a core infrastructure and a set of plugins. Plugins do the more immediately
useful activity, such as collecting information and sending the information somewhere. There are
broadly two classes of plugins: monitoring plugins and reporting plugins.

Monitoring plugins can collect information from a specific source; for example, the MySQL plugin
(described in Section 3.4.8, “MySQL") can collect the current performance of aMySQL database. A
configured monitoring plugin will act as a source of monitoring information.

Reporting plugins store gathered information or send it to some monitoring system. For example, the
filelog plugin (described in Section 3.5.1, “filelog”) will store information as a single line within a
log file, each line starting with the appropriate date/time stamp information. Another example is the
Gangliaplugin (see Section 3.5.3, “ Ganglia’), which sends network packets containing theinformation
so that an existing Ganglia monitoring system can display the information. A configured reporting
plugin will act asasink of information.

A target is a configured instance of a plugin, one that is monitoring something specific or sending
information to a specific information system. MonAMI can be configured so it has many MySQL
targets, each monitoring target monitoring a different MySQL database server. Another example is
when the filelog plugin is used to log data to different files. Although there is only ever one filelog
plugin, there are many filelog targets, one per file.

MonAMI-core provides the infrastructure that allows gathered information (provided by monitoring
plugins) to be sent to reporting plugins (which send the information off to where it is needed). Mon-
AMI-core also handles internal bookkeeping and the functionality common between plugins, such as
reading configuration files and caching results.

Introduction

Monitoring target
MysQL | _| Moot g targ < Reporting target

» Sample Ganglia
\ Every 10 minutes

. \
Monitoring target |\ — Reporting target
Apache Z \ Nagios
~

Sample
= Aggregation ~ [Reporting target
Monitoring target KSysGuard “«71T T~
NUT 2 —
(upsd) Dispatch Reporting target
daemon Events File log

. Log-file :

MonAMI-core

Figure 1.1. lllustration of MonAMI architecture

Several useful plugins (both monitoring and reporting) areincluded with the default distribution. How-
ever, MonAMI aims to be extensible. Writing a new monitoring plugin allows data to be sent to any
of the existing reporting plugins; writing a new reporting plugin allows any of the MonAMI data to
be sent to a new storage or monitoring system. Instructions on how to write new plugins are givenin
the developers guide (the file READVE. devel oper s).

1.2. The three monitoring flows

A monitoring agent (such as MonAMI) is charged with the job of marshalling information from one
or more systems (usually local to the agent) to some other system (often remote). Whether we are
monitoring a database for performance problems, keeping a watchful eye on missing web pages or
plotting a graph to see how many users are logged in over time, all monitoring activity can be under-
stood as consisting of three abstract components: the monitoring target, the monitoring agent and the
information system. In this context, the monitoring agent is MonAMI. The monitoring target might
be a database, webserver or the operating system's current-user information. The information system
might be alog file, web page or some distributed monitoring system, such as Ganglia (Section 3.5.3,
“Ganglia’) or Nagios (Section 3.5.9, “Nagios’).

Unlike mechanical monitoring systems (see, for example, the Watt governor), computerswork in dis-
crete units of time. In a multitasking operating system any monitoring activity must be triggered by
something outside the monitoring system. From the three components, we can describe three moni-
toring flows based on which component triggered the monitoring activity. If the information system
triggered the monitoring activity, the monitoring is on-demand; monitoring that is triggered within
the agent (i.e. triggered internally within MonAMI) isinternally-triggered; if the service triggered the
monitoring, due to some service-related activity, the monitoring is event-based.

Introduction

Monitoring flow type Typical uses
Internally-triggered monitong

Request
Monitoring T [, Monitoring Information
Target [oata) Agent \ System

Graphs,
Trend analysis

nnnnnnnn

hhhhhh i j
vent notification A
__ itori Information @
Target [oata > , system

= Aerts Accounting

Log files

On-demand monitoring

Request
L o Request R
Monitoring Request Monitoring Information

Target I SATA ‘> Agent system qﬁ
|4 [DATA ‘)

4

!

Requesting Detailed
Information Occationally

Figure 1.2. lllustration of thethree data flows

Internally-triggered monitoring is perhapsthe most common. An exampl e of internally-triggered mon-
itoring is periodically asking for (and recording somewhere) the current status of some service. We
might ask an Apache web-server the current activity of its threads; we might ask a MySQL database
how many times its query-cache has been useful. These questions can be asked at any time. Typically
the values are queried at regular intervals and the results are plotted on a graph.

With on-demand monitoring, some external agent asksfor data. An example of on-demand monitoring
would be aweb-page that returned the current status of a database: the information could be gathered
only when queried by auser. The external agent can request information at any time, although in prac-
tice, requests are often periodic. A major benefit of on-demand monitoring flows s that it allows the
monitoring requirementsto vary dynamically as greater or lesser volume of information is requested.
A potential problem with on-demand monitoring is with requests overloading the monitoring system.
MonAMI provides some protection against this by allowing the enforcement of a caching policy (see
Section 3.3.2, “ The cache attribute”).

The third monitoring flow is event-based monitoring. Events are triggered by the monitoring target
(e.g., the Apache server). The target (such as an Apache server) sends information voluntarily at an
unpredictable time, usually due to something happening externally. Event monitoring flow is most
often used to record that “ something” has happened; for example that aweb download has completed.

A plugin that supports event-based monitoring flow makes the events available in different chan-
nels. One can subscribe to one or more channels. Information from that channel is then sent to
one or more reporting targets. For example, the Apache web-server monitoring plugin (see Sec-
tion 3.4.2, “Apache”) can produce an event for each attempted HT TP transfer (whether successful or
not) as the access channel, so subscribing to the apache target's access channel would provide
information on all transfers. A subscription can be more more specific: the channel access. 4xx
provides information on only those transfers resulting in an error status-code, and subscribing to
access. 4xx. 404 will report on only missing page (status-code 404) events.

Explicit examples of each of the three event flows are given in Section 3.8, “ Example configurations’.
Although the examples rely on an understanding of the nonami . conf format (which Chapter 3,
Configuring MonAMI documentsin detail), the examples (along with the accompanying notes) should
be fairly obvious.

1.3. Datatrees

When monitoring something (a service, for example) it is rare that the current status is described by
asingle metric. Although you might only want atiny subset of the available information, the current

Introduction

statusis usually described by avast dew of data. We want a convenient concept that allows the data
to be grouped together, allowing easy selection of the interesting subsets.

A datatree is a collection of related information. As the name suggests, the metrics are held in atree
structure, analogous to a filesystem. A datatree has branches (like “directories’ or “folders’) each
of which contains measurements (like files) and further branches. In general, branches are generic
concepts and the data underneath the branches are measurements of the generic concept.

A typical datatreeisrepresented below. Here, the Thr eads branch containsdatarel ated to the generic
concept of threads, each of which might be undertaking one of several different activites. The data
underneath the Thr eads branch (wai ti ng, st arti ng, etc.) are the number of threadsin the re-

spective state (“waiting for a connection”, “starting up”, €tc..)

Apache

[
+--Workers

[
+--busy: 1

I
[
| +--idle: 49
I
+- - Thr eads
I
+--waiting: 49
I
+--starting: O

+--reading: O
I

+--replying: 1
I

+--keep-alive: 0

+--dns: O

I
+--closing: 0O
I
+--logging: O
I

+--graceful exit: O

[
+-idle: O

+--unused: 0

Each item of datais usualy referred to by its full path separated by periods (.), excluding the root
node. For example, the number of Apache threads currently replying with requested information is
Thr eads. r epl yi ng. Inthe above example, Thr eads. r epl yi ng hasavaueof 1.

Each metric has multiple elements of metadata. They all haveaname (e.g., Thr eads. r epl yi ng),a
value (1 for Thr eads. r epl yi ng in above example), atype (integer, floating-point number, string,
€tc...), astring describing in what units the measurement was taken (with numerical data and where
appropriate) and some additional binary metadata such as whether the information is static, a counter
or reflects current status.

Datatrees can be combined to form larger datatrees; or subtrees can be selected, limiting the informa-
tion delivered. Details of how to do this are given in Section 3.6.1, “The read attribute”.

Chapter 2. Running MonAMI

In this section, the various modes of running MonAMI are discussed. In most production environ-
ments, MonAMI runs as a single detached process (a daemon), launched from the system start-up
scripts (the init scripts), as described in Section 2.3, “Running in production environment”. Other
modes of running monamid, such as testing a new configuration, are also discussed.

2.1. Options for monamid

The MonAMI application (monamid) accepts only a limited number of options as most of the be-
haviour is controlled by the configuration file (/ hone/ paul / nonami -test-install/etc/
nonam . conf). The format of this configuration file is described in a later section of this guide
(Chapter 3, Configuring MonAMI).

The following options are available for the monamid application.
nmonami d [-f] [-h] [-v] [-V] [--pid-filefi | €]

-f or--no-daenon run in the foreground, i.e. do not detach from current terminal. Unless
explicitly configured in nonam . conf , logging output will be sent to
stdout orstderr.

-hor--help display abrief synopsis of available options.

-v or--verbose show more of the logging information. MonAMI aims to be a quiet ap-
plication. By default it will only report problems that are from extern re-
sources or that are due to configuration that is inconsistent. With the - v
option specified extrainformation is reported that, whilst not necessarily
reporting an error, is indicative of potentially abnormal activity. Thisis
often useful when MonAMI is not behaving as expected.

Thisoption can be repeated to include extradebugging information; infor-
mation useful when tracking down programming problems within Mon-

AML.

-Vor--version display the version of MonAMI and exit.

--pid-filefile store the PID of monamid infi | e, creating fi | e if it does not already
exist.

2.2. Testing a configuration

Without the - f option, the MonAMI application (monamid) will assumeit isrunning in a production
environment and will detach itself from the terminal. Theinit scripts for starting MonAMI also make
this assumption, and run monamid without the - f option.

When first using MonAMI, or when investigating anew configuration, it is often easier to understand
any problems if the application does not detach from the terminal and continues to display output to
the terminal. When experimenting, it is recommended to run MonAMI with the - f (foreground) and
- v (verbose) command-line options. As with other command-line options these can be combined, so
to test-run MonAMI, one can use the following: / usr/ bi n/ nonam d - f v.

2.3. Running in production environment

In normal operation, MonAMI will detach itself and run independently as a background task. Typical-
ly, one would want to run MonAMI automatically when a computer starts up. The de facto method of

Running MonAMI

achieving thisiswith init scripts. MonAMI includes a suitable script, which is stored in the/ home/
paul / monami -test-install/etc/init.ddirectory.

When installing MonAMI (either with the RPM package or manually with "make install") a suitable
"init script” will be installed in the / hone/ paul / nonam -test-install/etc/init.d di-
rectory. Once thisis done, a further two steps are needed: to register the new init script with the sys-
tem and "switch on" MonAMI. On RedHat-like machines, this is achieved with the following two
commands:

chkconfi g monam on

Tomanualy start or stop MonAMI, one can usetheinit scripts, with either thest ar t or st op option.
Y ou can either execute the script directly:

/etc/init.d/ nonam start

or using the "service" command.

servi ce nonam start

The complete list of arguments the init script acceptsis:

start Unconditionally attempt to start monamid. If monamid is aready running, this at-
tempt will fail.
stop Unconditionally stops monamid. If the application is not already running, then this

will (obviougly) fail.

rel oad Signals MonAMI to reload its configuration. This will only happen if monamid
is running: if the application is not running, this will fail. The reload is achieved
without stopping and starting monamid.

restart Unconditionally stop and start MonAMI. If monamid was not running, an error is
reported and the application is started.

condrestart If MonAMI is running, then stop monamid and restart it. If the application is not
running, then no action is taken.

2.4. Running from within the CVS tree

Finally, as an aid to development work, one can run MonAMI from within the CV Stree.

With the configuration, if MonAMI fails to find the configuration file in the configured location (/
hore/ paul / nonani -t est-i nstal | / et c/ nmonani . conf),itwill look for monami . conf
within the current working directory.

For plugins, MonAMI will first look in the configured plugin directory (/ home/ paul / nona-
m-test-install/lib/nonam).If thisdirectory does not exist, or contains no plugins, then
thepl ugi n directory within the current directory isexamined. Thesr ¢/ pl ugi n directory iswhere
plugins are placed as they are built.

MonAMI will run within CVS provided that the "current working directory” is sr ¢ and the CVS-
configured MonAMI does not share the same prefix as an installed MonAMI instance. It is recom-
mended not to run an installed MonAMI on a development machine and to use the - f command-line
option when running monamid from the CV S directory tree.

Chapter 3. Configuring MonAMI

MonAMI looksfor the configuration filemonani . conf . It will first look for thisfileinthe/ home/
paul / nonami -t est-install/etc directory. If monani . conf is not found there, the pro-
gram will check the current directory. If the configuration file still cannot be found, MonAMI will
exit with error code 1.

The configuration file can describe four things:

« configuration for MonAMI, independent of specific monitoring,

» which services need monitoring (the monitoring targets) and how to get that information,
» where information should be sent (the reporting targets),

* how data should flow from the monitoring targets to the reporting target.

As will be discussed later, it is possible to split parts of MonAMI configuration into different files.
This alows a set of monitoring definitions to be stated independently of other monitoring activity,
which may prove useful when MonAM I issatisfying multiple groups requiring monitoring of services.

3.1. Structure of a configuration file.

Comments can be included by starting a line with the hash (#) symbol. White space (consisting of
space or tab characters) before the hash symbol is allowed in comment lines.

Each configuration file is split into multiple stanzas (or sections). Each stanza has a section title line
followed by zero or more attribute lines.

A section title is a line containing a word in square brackets ("[mysql] " for example). The case
used for the section title does not matter: "[MySQL] ", "[nysql 1" and "[mySQL] " can be used
interchangeably.

All lines following a section title line until the next section title line (or the end of the file) must
be either a blank line, a comment line or an attribute line. Attribute lines are keyword-value pairs
separated by an equals symbol ("="), for example:

name = nmyMonitor

White space at the start of theline, either side of the equals symbol and at the end of thelineisignored.
Other white space, if significant, is preserved.

If aline ends with aback-slash symbol ("\ ") then that line and the one following it are combined into
asingle line. This can be repeated, allowing a single very long line to be broken into several shorter
(and more manageable) lines; each of the shorter lines, except the last one, must end with a back-
dlash symbol.

Example configuration files are include in Section 3.8, “Example configurations’.

The following sections describe the different sections that may appear in a configuration file, along
with the valid assignment lines that further refine MonAMI behaviour.

3.2. The [nonam] stanza.

One one stanza entitled "nonami " is allowed: subsequent nonani stanzas will be silently ignored.
The MonAMI section describes how MonAM I-core should run.

Configuring MonAMI

3.2.1. Logging Messages from MonAMI

MonAMI provides messages containing information about eventsthat occur during runtime. The des-
tination of these messagesis controlled by a set of configuration parametersthat all begin with "l og".

Each message has a severity; the four severity levelsare:
critical no further execution is possible, MonAMI will stop immediately.

error something went wrong. It is possible to continue running but with (potentially) reduced
functionality. Errors might be rectified by altering MonAMI configuration.

info a message that, whilst not indicating that there was an error, is part of alimited com-
mentary that might be useful in deciphering apparently bizarre behaviour.

debug amessage that is useful in determining why someinternal inconsistency hasarisen. The
information provided istediously verbose and only likely of use when finding problems
within the MonAMI program and plugins.

The destination of messages (and whether certain messages are ignored) can be configured on the
command line, or withinthe[nonam] section of the configuration file.

Normally, a user is only interested in "critical" and "error" messages. If MonAMI is not working
correctly, then examining the messages with "info" severity might provide a clue. Supplying the - v
command-line option tells MonAMI to return info messages.

If MonAMI isrunning as anormal process (using the - f option), then critical and error messages are
sent to standard error (st der r) and other message severity levelsareignored. If MonAMI isrunning
verbosely (using the - v option) then info messages are sent to standard output (st dout), if running
more verbosely (with - vv) then the debug messages are also sent to st dout .

If MonAMI isrunning asadaemon (i.e. without the- f command-line option) then, by default, critical
and error messages are sent to syslog (using the"daemon” facility), infoisignored (unless running with
the verbose option: - v) and debug is ignored (unless running more verbosely: - vv). Any messages
generated before MonAMI has detached itself are either sent to st dout , st der r or ignored.

Other destinations are defined as follows:

An absolutefile location (i.e. be- Thisis treated as a file destination. The message is appended

ginning with"/ ") to thefile, creating thefile if necessary.

syslog indicates the message should be sent to syslog daemon facility.
ignore indicates the message should be ignored.

stderr sends the message to standard-error output.

stdout sends the message to standard output.

Some examples:

[monam]
ignore all but critical errors
| og = ignore
log_critical = syslog
[monanmi]
store critical and error nessages in separate files
| og = ignore
log_critical = /var/log/nmonamni/critical.log

Configuring MonAMI

3.2.2.

3.2.3.

3.2.4.

| og_error = /var/l og/ nonam /error. | og

Dropping r oot privileges

MonAMI needs no specia privileges to run. In common with other applications, it is possible that
some bug in MonAMI be exploitable and allow alocal (or worse, remote) user to compromise the
local system. To reduce the impact of this, it is common for an application to “drop” their elevated
privileges (if running with any) soon after they start.

There are two options within the configuration file to control this: user and group. The user option
tells MonAMI to switch its user-1D to that of the supplied user and to switch group-1D to the default
group for that user. The group option overrides the user's default group, with MonAMI adopting the
group-I1D specified.

In the following example, the[nonani | stanzatellsMonAMI to drop r oot privileges and assume
the identity of user ronami and group noni t or s.

[monam]
user
group

nmonami
noni tors

Auxiliary configuration file directories

Often, a server may have multiple services running concurrently. Maintaining a monolithic configu-
ration file containing the different monitoring requirements may be difficult as services are added or
removed.

To get around this problem, MonAMI will load all the configuration files that end . conf within
a named directory (/ horre/ paul / monani -test-install/etc/nonam . d). If anew ser-
vice has been installed, additional monitoring can be indicated by copying a suitable file into the /
hone/ paul / nonami -test-install/etc/ nonam . d directory. When the service has been
removed the corresponding file in / hone/ paul / nonani -test-install/etc/nmonam . d
can be deleted.

Auxiliary configuration directories are specified withtheconf i g_di r option. Thisoption can occur
multipletimesina[monani | stanza. For example:

[monam]
config_dir = /etc/monam .d

Attributes

Summary of possible attributes within the [nonani | stanza

| og, string, optional change the default destination for all message severity levels.
This overwrites the built-in default behaviour, but is overwrit-
ten by any severity-specific options.

l og_critical,string, optional change the destination for critical messages. This overwrites
any other destination option for critical messages.

| og_error, string, optional change the destination for error messages. This overwrites any
other destination option for error messages.

| og_i nf o, string, optional change the destination for info messages. This overwrites any
other destination option for info messages.

Configuring MonAMI

| og_debug, string, optional change the destination for debugging messages. This over-
writes any other destination option for debug messages.

user, string, optional The user-name or user-id of the account MonAMI should use.
By default, MonAMI will aso adopt the corresponding group
ID.

gr oup, string, optional The group-name or group-id of the group MonAMI should use.
This will override the group ID corresponding to the user op-
tion.

config_dir, string, optiona A directory that contains additional configuration files. Each

file ending . conf is read and processed, but any nmonani
stanzas are ignored. Its recommended that this directory be on-
ly readable by the user account that MonAMI will run under.

3.3. Features common across plugins

3.3.1.

3.3.2.

There are some features that are common to each of the plugins. Rather than repeat the same informa-
tion under each plugin's description, the information is presented here.

The name attribute

Each distinct service has a separate stanza within the configuration file, using the plugin name. Con-
sidering the apache monitoring plugin (which monitors an Apache HT TP webserver) as an example,
one can monitor multiple Apache webservers with several separate [apache] stanzas: onefor each
monitoring target. To illustrate this, the following configuration describes how to monitor an intranet
web server and an external web server.

[apache]
name = external -webserver
host = www. exanpl e. org

[apache]
nane = internal -webserver
host = www. i ntranet. exanpl e.org

Each target must have a unique name. It is possible to specify the name a target will adopt with the
nane attribute (as in the above example). If no name attribute is given, the target take the name of
the plugin by default. However, since all names must be unique, only one target can adopt the default
name: all subsequent targets (from this plugin) must have their name specified explicitly using the
nare attribute.

Although specifying a nane is optional, it is often useful to set a name explicitly (preferably to
something meaningful). Simple configuration files will work fine without explicitly specifying target
names, whilst configuration files describing more complex monitoring requirements will likely fail
unless they have explicitly named targets.

If there is an ambiguity (due to different targets having the same name) MonAMI will attempt to
monitor as much as possible (to “ degrade gracefully”) but some loss of functionality isinevitable.

The cache attribute

Acquiring the current status of aservice will inevitably take resources (such as CPU time and perhaps
disk space) away from the service. For some services this effort is minimal, for others it is more
substantial. Whatever the burden, there will be some monitoring frequency above which monitoring
will impact strongly on service provision.

10

Configuring MonAMI

3.3.3.

To prevent overloading a service, the results from querying a service are stored within MonAMI for
aperiod. If there is a subsequent request for the current state of the target within that period then the
stored results are used rather than directly querying the underlying service: the results are cached.

The cache retention period is adjustable for each target and can be set with the cache attribute. The
cache attributevalueisthetimefor which dataisretained, or (equivalently) the guaranteed minimum
time between successive queries to the underlying service.

The valueis specified using the standard time-interval notation: one or more numbers each followed
by a single letter modifier. The modifiers are s, m h and d for seconds, minutes, hours and days
respectively. If aqualifier is omitted, seconds is assumed. The total cache retention period is the sum
of thetime. For example5m 10s isfive minutes and ten seconds and i s equivalent to specifying 310.

In the following example configuration file, the MySQL queries are cached for a minute whilst the
Apache queries are cached for 2 seconds:

[apache]
host = www. exanpl e. org
cache = 2

[mysal]

host = nysql -serv. exanpl e. org
user = nonani

password = npnami - secr et
cache = 1m

If no cacheretention period is specified, adefault value of one second isused. Since MonAMI operates
at the granularity of one second, there is apparently no effect on individual monitoring activity, yet
we ensure that targets are queried no more often than once a second.

For many services, aone second cacheretention timeistoo short and the cached datashoul d beretained
for longer; yet if the cacheretention timeis set for too long, transitory behaviour will not be detectable.
A balance must be struck, which (most likely) will need some experimentation.

The map attribute

The map attribute describes how additional information isto be added to an incoming datatree. When
adatatreeis sent to atarget that has one or moremap attributesitisfirst processed to alter theincoming
datatree. To the target, the additional metrics provided by map attributes are indistinguishable from
those of the original datatree.

The map attribute values take the following form:

map = target nmetric : source

Thevalueof t ar get et ri ¢ determines the name of the new metric and where it isto be stored.
Any periods (.) withint arget netri ¢ will be interpreted as a path within the datatree. If the
elements of the path do not exist, they are created as necessary, unless there is already a metric with
the same name as a path element.

The sour ce describes where the information for this new metric isto come from. The two possibil-
ities are string-literals and specials.

Sring-literals are a string metric that never change: they have a fixed value independent of any mon-
itoring activity. A string-literal starts and ends with a double-quote symbol (") and can have any con-
tent in between. Since MonAMI aims at providing monitoring information, the use of string literals
is discouraged.

A special is something that provides some very basic information about the computer: sufficiently
basic that providing the information viaaplugin is unnecessary. A special is represented by its name
contained in angle-brackets (< and >). The following specials are available:

11

Configuring MonAMI

3.3.4.

FQDN the Fully Qualified Domain Name of the machine. Thisisthefull DNS name of the computer;
for example, wwwv. exanpl e. or g.

The follow simple, stand-alone MonAMI configuration illustrates map attributes.

[null]

[sanpl e]

read = nul

wite = snapshot

interval =1

[snapshot]

filenane = /tnp/ monam - snapshot

map = tests.string-literal.first : "this is a string-literal"
map = tests.special.fqgdn : <FQDN>

map = tests.string-literal.second : "this is also a\

string-literal”

Thenull plugin (see Section 3.4.9, “null™) produces datatrees with no data. Without the map attributes,
the snapshot would produce an empty file at / t mp/ nonami - snapshot . The nap attributes add
additional metrics to otherwise-empty datatrees. This is reflected in the contents of / t np/ nona-
m - snapshot.

Estimating future data-gathering delays

The process of gathering monitoring data from a service is not instantaneous. In general, there will
be a delay between MonAMI requesting the data and it receiving that data. The length of this delay
may depend on several factors, but islikely to depend strongly on the software being monitored and
how busy is the server.

Whenever MonAMI receives data, it makes a note of how long this data-gathering took. MonAMI
uses this information to maintain an estimate for the time needed for the next request for data from
this monitoring target.

Thisestimateisavailableto all plugins, but currently only two useit: gangliaand sample. Theganglia
plugin passes this information on to Ganglia as the dnax value (see Section 3.5.3, “dmax”) and the
sample plugin uses this information to achieve adaptive monitoring (see Section 3.6.4, “Adaptive
monitoring”).

When maintaining an estimate of the next data-gathering delay, MonAMI takes a somewhat pes-
simistic view. It assumes that data-gathering will take as long as the longest observed delay, unless
thereis strong evidence that the situation has improved. If gathering data took longer than the current
estimate, the estimate isincreased correspondingly. If a service becomes sufficiently loaded (e.g., due
to increase user activity) so that the observed data-gathering delay increases, MonAMI will adjust its
estimate to match.

If data-gathering takes less time than the current estimated value, the current estimate is not automat-
ically decreased. Instead, MonAMI waits to see if the lower value is reliable, and that the delay has
stabilised at the lower value. Once it is reasonably sure of this, MonAMI will reduce its estimate for
future data-gathering delays.

To determine when the delay has stabilised, MonAM I keeps a history of previous data-gathering delay
values. The history is stored as severa discrete intervals, each with the same minimum duration. By
default, there are ten history intervals each with a one minute minimum duration, giving MonAMI a
view of recent history going back at least ten minutes.

Each interval has only one associated value: the maximum observed delay during that interval. At all
times, there is an interval called the current interval. Only the current interval is updated, the other
intervals provide historical context. As data is gathered the maximum observed delay for the current
interval is updated.

12

Configuring MonAMI

When the current interval has existed for more than the minimum duration (one minute, by default),
all theintervalsmoved: the current history interval becomesthefirst non-current history interval, what
was the first non-current interval becomes the second, and so on. The information in the last history
interval is dropped and anew current interval is created. Future data-gathering delays are recorded in
this new current interval until the minimum interval has elapsed and the intervals moved again.

MonAMI takes two statistical measures of the history intervals: the maximum value and the average
absolute deviation (or average deviation for short). The maximum value is the proposed new value
for the estimated delay, if it is lower, and the absolute deviation is used to determine if the change
issignificant.

Broadly speaking, the average deviation describes how settled the data stored in the historic intervals
are over the recent history: a low number implies data-taking delays are more predictable, a high
number indicates they are less predicable. MonAMI only reduces the estimate for future delaysiif the
difference (between current estimate value and the maximum over al historic intervals) is significant.
It is significant if the ratio between the proposed drop in delay and the average deviation exceeds a
certain threshold value.

In summary, to reduce the estimate of future delays, the observed delay must be persistently low over
therecorded history (minimum of 10 minutes, by default). If the delay istemporarily low, isdecreasing
over time or fluctuates, the estimate is not reduced.

There are two attributes that affect how MonAMI determines its estimate. The default values should
be sufficient under most circumstances. Moreover, there are separate attributes for adjusting the be-
haviour both of adaptive monitoring (see Section 3.6.5, “Sample attributes’), and the drmaxx value of
Ganglia (see Section 3.5.3, “Attributes’). Adjusting these attributes may be more appropriate.

Attributes

nd_i nt er val s integer, optional the number of historic intervals to consider. The default is 10
and the value must be between 2 and 30. Increased number of
intervals results in more stringent requirement needed before
the estimate is reduced. It also increases the accuracy of the
average deviation measurements.

Having a small number of intervals (less then 5, say) is not
recommended as the statistics becomes lessreliable.

A large number of intervals gives more reliable statistical re-
sults, but the system will take longer to react (to reduce the
delay estimate) to changing situations. Perhaps this is most
noticeable if there is a single data-gathering delay that is un-
usualy long. If this happens, MonAMI will take at least the
md_intervals times the minimum delay to reduce the delay es-
timate.

nmd_dur at i on integer, optional The minimum duration, in seconds, for aninterval. The default
is60 seconds and the val ue must be between 1 second and 1200
seconds (20 minutes).

Each interval must have at least one data point: an observa-
tion of the data-gathering delay. To ensure this, the value of
md_duration is implemented as a minimum duration and, in
practise, the intervals can be longer. For example, with the de-
fault configuration (md_duration of one minute, md_intervals
of 10) if only asingle monitoring flow is established that gath-
ers data from amonitoring target every 90 seconds, each inter-
val will have a 90 second duration and complete history will
be 15 minute.

13

Configuring MonAMI

3.4. Monitoring Plugins

3.4.1.

This section describes the different services that can be monitored (for example, a MySQL database
or an Apache webserver). It gives brief introductions to which services the plugins can monitor and
how they can be configured. Wherever possible, sensible defaults are available so often little or no
configuration is required for common deployment scenarios.

The available monitoring plugins depend on which plugins have been built and installed. If you have
received this document as part of a binary distribution, it is possible that the distribution does not
include all the plugins described here. It might also contain other plugins provided independently from
the main MonAMI release.

AMGA

AMGA (ARDA Metadata Catalogue Project) is a metadata server provided by the ARDA/EGEE
project as part of their gLite software releases. It provides additional metadata functionality by wrap-
ping an underlying database storage. More information about AMGA is available from the AMGA
project page [http://project-arda-dev.web.cern.ch/project-arda-dev/metadatal].

The amga monitoring plugin will monitor the server's database connection usage and the number of
incoming connections. For both, the current value and configured maximum permitted are monitored.

Attributes
host string, optiona the host on which the AMGA server isrunning. The default value
isl ocal host .
port integer, optional the port on which the AMGA server listens. The default value is
8822.

3.4.2.

Apache

The Apache HTTP (or web) server is perhaps the most well known project from the Apache Software
Foundation. Since April 1996, the Netcraft web survey has shown it to be the most popular on the
Internet. More details can be found at the Apache home page [http://httpd.apache.org/].

The apache plugin monitors the current status of an Apache HTTP server. It can also provide event-
based monitoring, based on various log files.

The Apache server monitoring is achieved by downloading the server-status page (provided by the
mod_status A pache plugin) and parsing the output. Usually, this option is available within the Apache
configuration, but commented-out by default (depending on the distribution). The location of the
Apache configuration is Apache-version and OS specific, but is usually found in either the / et c/
apache,/ et c/ apache2or/ et c/ ht t pd directory. To enablethe server-status page, uncomment
the section or add lines within the apache configuration that look like:

<Location /server-status>
Set Handl er server-status
Order deny, al | ow
Deny from al |
Al'l ow from . exanpl e.com
</ Locati on>

Here . exanpl e. comisan illustration of how to limit access to this page. Y ou should change this
to either your DNS domain or explicitly to the machine on which you are to run MonAMI.

There is an ExtendedStatus option that configures Apache to include some additional information.
Thisis controlled within the Apache configuration by lines similar to:

14

http://project-arda-dev.web.cern.ch/project-arda-dev/metadata/
http://project-arda-dev.web.cern.ch/project-arda-dev/metadata/
http://project-arda-dev.web.cern.ch/project-arda-dev/metadata/
http://httpd.apache.org/
http://httpd.apache.org/

Configuring MonAMI

<l| f Modul e nod_st at us. ¢c>
Ext endedSt at us On
</ | f Modul e>

Switching on the extended status should not greatly affect the server's load and provides some addi-
tional information. MonAMI can understand this extra information, so it is recommended to switch
on this ExtendedStatus option.

Event-based monitoring

Event-based monitoring is made available by watching log files. Any time the Apache server writes
to a watched log file, an event is generated. The plugin supports multiple event channels, allowing
support for multi-homed servers that log events to different log files.

Event channelsare specified by | og attributes. This can be repeated to configure multiple event chan-
nels. Each | og attribute has a corresponding value like;
nane: pat h[t ype]

where:

name isan arbitrary name given to this channel. It cannot have a colon (:) and should not have a
dot (.) but most names are valid.

pat h isthe path to thefile. Log rotations (where alog file is archived and a new one created) are
supported.

type iseither conbi ned,orerror.

Thefollowing example configurestheaccess channel toread thelogfile/ var / | og/ apache2/
access. | og, whichisin the Apache standard “combined” format.

[apache]
|l og = access: /var/|og/apache2/ access. | og [conbi ned]

Attributes
host string, optiona the hostname for webserver to monitor. The default value is
| ocal host .
port integer, optional the port on which the webserver listens. The default value is 80
| og string, zero or more specifies an event monitoring channel. Each | og attribute has

3.4.3.

avaluelike nanme : path [type]

dCache

dCache (see dCache home page [http://www.dcache.org]) isa system jointly devel oped by Deutsches
Elektronen-Synchrotron (DESY) and Fermilab that aims to provide a mechanism for storing and re-
trieving huge amounts of data among a large number of heterogeneous server nodes, which can be
of varying architectures (x86, ia32, iab4). It provides a single namespace view of al of the files that
it manages and allows access to these files using a variety of protocols, including SRM, GridFTP,
dCap and xroot. By connecting dCache to a tape storage backend, it becomes a hierarchical storage
manager (HSM).

Authentication

The dCache monitoring plugin works by connecting to the underlying PostGreSQL database that
dCache uses to store the current system state. To achieve this, MonAMI must have the credentials (a
username and password) to log into the database and perform read queries.

15

http://www.dcache.org
http://www.dcache.org

Configuring MonAMI

If you do not already have a read-only account, you will need to create such an account. It is strongly
recommended not to use an account with any write privileges as the password will be stored plain-text
within the MonAMI configuration file (see Section 4.2.2, “Passwords being stored insecurely”).

To configure PostGreSQL, SQL commands need to be sent to the database server. To achieve this,
you will need to use the psgl command, connecting to the dcache database. On many systems you
must log in as the database user “postgres’, which often has no password when connecting from the
same machine on which database server is running. A suitable command is:

psql -U postgres -d dcache

The following SQL commands will create an account nonani with password monani - secr et
that has read-only access to the tables that MonAMI will read.

g Important

Please ensure you change the example password (monami - secr et).

CREATE USER nonami ;
ALTER USER nonam PASSWORD ' nonani - secret’;

GRANT SELECT ON TABLE copyfil erequests_b TO nonam ;
GRANT SELECT ON TABLE getfil erequests_b TO nonam ;
GRANT SELECT ON TABLE putfil erequests_b TO nonam ;

If you intend to monitor the database remotely, you may need to add an extra entry in PostGreSQL's
remote accessfile: pg_hba. conf . With somedistribution, thisfileislocated inthedirectory / var /
I'i b/ pgsql / dat a.

Currently, the information gathered is limited to the rate of SRM GET, PUT and COPY re-
quests received. This information is gathered from the copyfilerequests b, getfilerequests b and
putfilerequests b tables. Future versions of MonAMI may read other tables, so requiring additional
CGRANT statements.

Attributes

host string, optiona the host on which the PostGreSQL database is running. The
defaultis| ocal host .

i paddr string, optional the P address of the host on which the databaseisrunning. This
is useful when the host is on multiple | P subnets and a specific
one must be used. The default isto look up the I P address from
the host.

port integer, optional the TCP port to use when connecting to the database. The de-
fault is port 5432 (the standard PostGreSQL port).

user string, optiona the username to use when connecting to the database. The de-
fault isthe username of the system account MonAMI isrunning
under. When running as a daemon from a standard RPM-based
installation, the default user will be ronami .

passwor d string, optional the password to use when authenticating. The default is to at-

3.4.4.

tempt password-less login to the database.

Disk Pool Manager (DPM)

Disk Pool Manager (DPM) is a service that implements the SRM protocol (mainly for remote access)
and rfio protocol (for site-local access). It is an easy-to-deploy solution that can support multiple disk
servers but has no support for tape/mass-storage systems. More information on DPM can be found at
the DPM home page [https://twiki.cern.ch/twiki/bin/view/L CG/DataM anagementDocumentation].

16

https://twiki.cern.ch/twiki/bin/view/LCG/DataManagementDocumentation
https://twiki.cern.ch/twiki/bin/view/LCG/DataManagementDocumentation

Configuring MonAMI

DPM total usage by group

T001084

£ 10M
o 2 SO . 1 .
week 16 week 13 week 20 Filesystem status
M camont W alice M pheno [atlas M ops O dteam O sixt Ok co5.248)
W cns O atlas_Role=Tcgadmin O Thch M totalep Dr‘eadfonly (4.76%)
W dtean Role=lcgadmin O ilc O babar 0O cws_Role=lcgadmin
W atlas_Role=production [ngs W zeus [gridpp O dzero
DPM total usage by filesystem g

20 M ' L3

g2 10H &

week 18 week 15 Week 20

M Agridstores W Agridstored W Aqridstored [0 Agridstore2
W Agridstored

Figure 3.1. Data from DPM displayed within Ganglia.

The dpm plugin connects to the MySQL server DPM uses. By querying this database, information is
extracted such as the status of the filesystems and the used and available space. The space statistics
are available as a summary, and broken down for each group, and for each filesystem. The daemon
activity on the head node can also be monitored.

Authentication

This plugin requires read-only privileges for the database DPM uses. The following set of SQL state-
ments creates login credentialswith username of nonami user and password of nonami pass suit-
ablefor local access:

GRANT SELECT ON cns_db.* TO ' nonani user' @I ocal host'
| DENTI FI ED BY ' nonani pass' ;

GRANT SELECT ON dpm db.* TO ' nonani user' @I ocal host'
| DENTI FI ED BY ' nonani pass' ;

If MonAMI is to monitor the MySQL database remotely, the following SQL can be used to create
login credentials

GRANT SELECT ON cns_db.* TO ' npnami user' @ %
| DENTI FI ED BY ' nonani pass' ;

GRANT SELECT ON dpm db.* TO ' npnami user' @ %
| DENTI FI ED BY ' nonani pass' ;

If local and remote access to the MonAMI database is needed all four above SQL commands should
be combined.

Attributes
host string, optiona the host on which the MySQL server isrunning. Defaultis| o-
cal host.
user string, required the username with which to log into the server.
passwor d string, required the password with which to log into the server.

3.4.5.

Filesystem

The filesystem plugin monitors generic (i.e., non-filesystem specific) features of a mounted filesys-
tem. It reports both capacity and “file” statistics. The “file” statistics correspond to inode usage for
filesystems that use inodes (such as ext2).

17

Configuring MonAMI

% Note

With both reported resources (blocks and files), there are similar-sounding metrics: “free” and “available”. “free”
refers to total resource potentially available and “available” refers to the resource available to general (non-root)
users.

The difference between the two comes about because it is common to reserve some capacity for the root user.
This allows core system services to continue when a partition is full: normal users cannot create files but root (and
processes running as root) can.

Attributes

3.4.6.

| ocat i on string, required the absolute path to any file on the filesystem.

GridFTP

The Globus Alliance distribute a modified version of the WU-FTP client that has been patched to
allow GSl-based authentication and multiple streams. Thisis often referred to as“ GridFTP”.

Various grid components use GridFTP as an underlying transfer mechanism. Often, these have the
same log-file format for recording transfers, so parsing thislog-file is a common requirement.

The gridftp plugin monitors GridFTP log files, providing an event for each transfer. Thisisunder the
transf er s channel.

Attributes

3.4.7.

fil enane string, required the absolute path to the GridFTP log file.

Maui

Ontheir website, Cluster Resourcesdescribe Maui as* an advanced batch scheduler with alargefesture
set well suited for high performance computing (HPC) platforms’. Within acluster it isused to decide
which job (of many that are available) should be run next. Maui provides sophisticated scheduling fea-
tures such as advanced fair-share definitions and “alocation bank”. More details are available within
the Maui homepage [http://www.clusterresources.com/pages/products/maui-cluster-schedul er.php].

Access control

The MonAMI maui plugin will need sufficient access rights to query the Maui server. If MonAMI is
running on the same machine as the Maui server, (most likely) no additional host will be needed. If
MonAMI isrunning on aremote machine, then access-right must be granted for that machine. Append
the remote host's hostname to the space-separated ADM NHOST list.

The plugin will also need to use a valid username. By default it will use the name of the user it is
running as (monami), but the plugin can use an alternative username (seetheuser attribute). To add
an additional username, append the username to the space-separated ADM N3 list.

The following example configuration shows how to configure Maui to alow monitoring from host
nmonami . exanpl e. or g asuser nonam .

SERVERHOST maui - server . exanpl e. org

ADM N1 root

ADM N3 nmonani

ADM NHOST maui - server . exanpl e.org nonani . exanple.org
RMCFJ base] TYPE=PBS

SERVERPORT 40559

SERVERMODE NORVAL

18

http://www.clusterresources.com/pages/products/maui-cluster-scheduler.php
http://www.clusterresources.com/pages/products/maui-cluster-scheduler.php

Configuring MonAMI

Password

The Maui authenticates by the client and server keeping a shared secret: a password. Currently this
password must be integer number. Unfortunately, the password is decided as part of the Maui build
process. If oneisnot explicitly specified, arandom number is selected as the password. The password
is then embedded within the Maui client programs and used when they communicate with the Maui
server. Currently, it is not possible to configure the Maui server to use an alternative password without
rebuilding the Maui client and servers.

To communicate with the Maui server the maui plugin must know the password. Unfortunately, as
the password is only stored within the executables, it is difficult to discover. The maui plugin has
heuristics that allow it to scan aMaui client program and, in most cases, discover the password. This
requiresaMaui client program to be present on whichever computer MonAMI isrunning. If the Maui
client isin anon-standard location, its absolute path can be specified with the exec attribute.

If the password is known (for example, its value was specified when compiling Maui) then it can
be specified using the passwor d attribute. Specifying the passwor d attribute will stop MonAMI
from scanning Maui client programs.

Once the password is known, it can be stored in the MonAMI configuration using the passwor d
attribute. Thisremovesthe need for aMaui client program. However, should the Maui binaries change
(for example, upgrading an installed Maui package), it is likely that the password will also change.
Thiswould stop the MonAMI plugin from working until the new password was supplied.

The recommended deployment strategy isto install MonAMI on the Maui server and allow the maui
plugin to scan the Maui client programs for the required password.

Time synchronisation

When communi cating between the maui and Maui server, both parties want to know that the messages
are really from the other party. The shared-secret is one part of this process, another is to check the
time within the message. Thisisto prevent a malicious third-party from sending messages that have
already been sent: a“replay attack”.

To prevent thesereplay attacks, the clocks on the Maui server and the server MonAMI isrunning must
agree. If both machines are well configured, their clocks will agree with ~10 millisecond difference.
Since the network may introduce a sight delay, some tolerance is needed.

The maui plugin requires an agreement of one second by default. This should be easy to satisfied with
modern networks. If, for whatever reason, thisis not possible the tolerance can be make more lax by
specifyingthemax_ti me_del t a attribute.

Note

Should there be a systematic error between the clocks on two servers, effort should be made in synchronosing those
clocks. Increasing themax_t i me_del t a makes MonAMI more vulnerable to replay attacks.

Attributes
host string, optional the hostname of the Maui server. If not specified, | ocal host
will be used.
port integer, optional the TCP port to which the plugin with connect. If not specified,
the default value is 40559.
user string, optiona the user name to present to the Maui server when communicat-

ing. The default value is the name of the account under which
MonAMI isrunning.

19

Configuring MonAMI

max_t i me_del t a integer, op- the maximum allowed time difference, in seconds, between the
tional server and client. The default value is one second.
passwor d integer, optional the shared-secret between this plugin and the Maui server. The

default policy isto attempt to discover the password automati-
cally. Specifying the password will prevent attempts at discov-
ering it automatically.

t i meout string, optional thetime MonAM I should wait for areply. Thestringisintime-
interval format (e.g., “5m 10s” is five minutes and ten sec-
onds; “310” would be equivalent). The default behaviour isto
wait indefinitely.

exec string, optional the absolute path to the mclient (or similar) Maui client pro-
gram. If the plugin was unsuccessful scanning the program giv-
en by exec it will also try standard locations.

3.4.8. MySQL

This plugin monitors the performance of a MySQL database. MySQL is a commonly used Free
(GPLed) database. The parent company (MySQL AB) describe it as “the world's most popular open
source database”. For more information, please see the MySQL home page [http://www.mysgl.com/]

The statistics monitored are taken from the status variables. They are acquired by executing the
MySQL SQL SHOW STATUS; . Theraw variables are described in the MySQL manual, section 5.2.5:
Satus Variables [http://dev.mysqgl.com/doc/refman/5.0/en/server-status-variables.html].

Note

Themetrics names provided by MySQL arein aflat namespace. These namesare not used by MonAMI; instead, the
metrics are mapped into atree structure, allowing more easy navigation of, and section from, the available metrics.

Privileges

To function, this plugin requires an account to access the database. Please note: this database account
requires no database access privileges, only that the username and password will allow MonAMI to
connect to the MySQL database. For security considerations, you should not employ login credentials
used elsawhere (and never r oot or similar power-user). The following is a suitable SQL statement
for creating a username and password of nonamni and nmonam pass.

CREATE USER ' nonami ' @1 ocal host' | DENTI FI ED BY "nonani pass”;

Sharing login credentialsis not recommended. If you decide to share credentials make sure the Mon-
AMI configuration file is readable only by the nonami user (see Section 3.2.2, “Dropping r oot
privileges’).

z Note

In addition to monitoring a MySQL database, the mysgl plugin can also store information MonAMI has gathered
within MySQL. Thisisdescribed in Section 3.5.8, “MySQL".

Attributes
user string, required the username with which to log into the server.
passwor d string, required the password with which to log into the server
host string, optional the host on which the MySQL server is running. If no host is

specified, the default | ocal host isused.

20

http://www.mysql.com/
http://www.mysql.com/
http://dev.mysql.com/doc/refman/5.0/en/server-status-variables.html
http://dev.mysql.com/doc/refman/5.0/en/server-status-variables.html

Configuring MonAMI

3.4.9. null

The null plugin is perhaps the simplest to understand. As a monitoring plugin, it providing an empty
datatree when requested for data. The main use for null as a monitoring target is to demonstrating
aspects of MonAMI without the distraction of real-life effects from other monitoring plugins.

The null plugin will supply an empty datatree. In conjunction with a reporting plugin (e.g., the snap-
shot), this can be used to demonstrate the map attribute for adding static content. This attribute is
described in Section 3.3.3, “ The map attribute”.

Delays

Another use for a null target is to investigate the effect of a service taking a variable length of time
to respond with monitoring data. This is emulated by specifying a delay file. If the del ayfil e
attribute is set, then the corresponding file is read. It should contain a single integer number. This
number dictates how long (in seconds) a null target should wait when requested for data. The file
can be changed at any time and the change will affect the next time the null target is read from.
Thisis particularly useful for demonstrating how MonAMI estimates future delays (see Section 3.3.4,
“Estimating future data-gathering delays’) and undertakes adaptive monitoring (see Section 3.6.4,
“ Adaptive monitoring”).

The following example will demonstrate this usage:

[null]
del ayfil e=/t np/ monam - del ay

[sanpl e]

read = null
wite = null
interval = 1s

Then, by changing the number stored in/ t np/ monamni - del ay, the delay can be adjusted dynam-
ically. To set the delay to three seconds, do:

$ echo 3 > /tnp/nonani - del ay

To remove the delay, simply set the delay to zero:

$ echo 0 > /tnp/ nonani - del ay

Attributes

del ayfi | e string, optional the filename of the delay file, the contents of whichisparsed as
an integer number. This number is the number of seconds the
null target will delay when replying with an empty datatree.

3.4.10. NUT

Network UPS Tools (NUT) provides a standard method through which an Uninterruptable Power
Supply (UPS) can be monitored. Part of this framework alows for signalling, so that machines can
undergo a controlled shutdown in the event of a power failure. Further details of NUT are available
from the NUT home page [http://www.networkupstool s.org/].

The MonAMI nut plugin connects to the NUT data aggregator daemon (upsd) and queries the status
of al known, attached UPS devices. Theups. conf file must be configured for available hardware
and the startup scripts must be configured to start the required UPS-specific monitoring daemons.

21

http://www.networkupstools.org/
http://www.networkupstools.org/

Configuring MonAMI

By default, | ocal host will beallowed accesstothe upsd daemon but accessfor external hosts must
be added explicitly intheupsd. conf file. Seethe NUT documentation on how best to achieve this.

Attributes

host string, optional the host on which the NUT upsd daemon is running. The default
valueisl ocal host .

port integer, optional the port on which the NUT upsd daemon listens. The default val-
ueis3493.

3.4.11. Process

The process plugin monitors Unix processes. It can count the number of processes that match search
criteriaand can give detailed information on a specific process.

The information process gives should not be confused with any process, memory or thread statistics
other monitoring plugins provide. Some servicesreport their current thread, process or memory usage,
which may duplicate some of the information this plugin reports (see, for example, Section 3.4.2,
“Apache” and Section 3.4.8, “MySQL"). However, process reports information from the kernel and
should work with any application.

The process plugin has two main types of monitors: counting processes and detailed information about
asingle process. A single process target can be configured to do any number of either type of moni-
toring and the results are combined in the resulting datatree.

Counting processes

To count the number of processes, a count attribute must be specified. In its ssimplest form, the
count attribute valueis simply the name of the processto count. The following example reports the
number of i mapd processes that are currently in existance.

[process]
count = i mapd

Theformat of thecount attribute allows for more sophisticated queries of form: r eport ed nane
proc nane [condl, cond2, ...]

All of the parts are optional: the part upto and including the colon (r eport ed nane :), the part
after the colon but before the square brackets (pr oc nane) and the part in square brackets ([cond1,
cond2, ...])canbeomitted, but at least one of thefirst two parts must be specified. The examples
below may help clarify this!

To beincluded in the count, aprocess name must match thepr oc narme (if specified). The statistics
will be reported asr eport ed name. If no reporting name is specified, then pr oc namne will be
used.

Thepart in square brackets, if present, specifies some additional constraints. The comma-separated list
of key, value pairs define additional predicates; for example, [ui d=r oot, st at e=R] meansonly
processes that are running asr oot and are in state running will be counted. The valid conditions are:

uid = uid to be considered, the process must be running with auser 1D of ui d. The
value may be the numerical uid or the username.

gid = gid the process must be running with a group ID of gi d. The value may be
the numerical gid or the group name.

state = statelist theprocess must have one of the states listed in st at el i st . Each ac-
ceptable process state is represented by asingle capital letter and they are
concatinated together. Valid process states | etters are:

22

Configuring MonAMI

processis running (or ready to be run),

sleeping, awaiting some external event,

in uninterruptable sleep (typically waiting for disk 10 to complete),
stopped (due to being traced),

paging,

dead,

N X £ 4 o u =

defunct (or "zombie" state).

The following example illustrates count used to count the number of processes. The different at-
tributes show how the different criteria are represented.

[process]

count = imapd O

count = io_imapd : imapd [state=D] O

count = all_java © java O

count = tontat_java : java [uid=tontat5] O

count = zonbies : [state=Zz] O

count = tcat_z : java [uid=tonctat4, state=Z] O
count = run_as_root : [uid=0] O

O Count the number of i mapd processes.

O Count the number of i mapd processes that are in “uninterruptable sleep” state: stopped whilst
waiting for block 1/O (e.g. disk I/0).

O Count the number of java processes that are running. Store the number as a metric called
all _java.

O Count the number of java processes that are running as user t ontat 5. Store the number as a
metric calledt ontat _j ava.

O Count the total number of zombie processes. Store the number as ametric called zonbi es.

0 Count the number of zombietomcat processes. Store the number asametric caledt cat _z.

O Count the number of processes running as r oot . Store the number as a metric called
run_as_root.

Detailed information

Thewat ch attribute specifies a process to monitor in detail. The process to watch isidentified using
the same format as with count statements; however, the expectation is that only a single process
will match the criteria.

If there is more than one process matching the search criteria then one is chosen and that processis
reported. In principle, the selected process might change from one time to the next, which would lead
to confusing results. In practise, the process with the lowest pid is chosen, so is both likely to be the
oldest process and unlikely to change over time. However, this behaviour is not guaranteed.

Much information is gathered with awat ch attribute. This information is documented in the st at
and st at us sections of the proc(5) manual page. Some of the more useful entries are copied below:

pid the process ID the the process being monitored.

ppid the process ID of the parent process.

state asingle character, with the same semantics as the different process states listed above.
minflt number of minor memory page faults (no disk swap activity was required).

23

Configuring MonAMI

majflt number of major memory page faults (those requiring disk swap activity).
utime number of jiffies1 of time spent with this process scheduled in user-mode.
stime number of jiffieﬁl of time spent with this process scheduled in kernel-mode.

threads number of threads in use by this process.

g Note

An accurate valueis provided by the 2.6-serieskernels. Under 2.4-serieskernel with LinuxThreads,
heuristics are used to derive avalue. Thisvalue should be correct under most circumstances, but it
may be confused if multiple instances of the same multi-threaded processis running concurrently.

vsize virtual memory size: total memory used by the process.
rss Resident Set Size: number of pages of physical memory a process is using (less 3 for
administrative bookkeeping).
Attributes

count string, optional

wat ch string, optional

3.4.12. Stocks

either the name of the process(es) to count, or the conditions pro-
cesses must satisfy to be included in the count. This attribute may
be repeated for multiple process counting.

count attributes have the form: reported nane
proc nane [condl, cond2, ...]

either the name of the process to obtain detailed information, or
the conditions a process must satisfy to be watched. This attribute
may be repeated to obtain detailed i nformation about multiple pro-
Cesses.

wat ch attributes have the form: reported name
proc nane [condl, cond2, ...]

The stocks plugin uses one of the web-services provided by XMethods [http://www.xmethods.com/
] to obtain a near real-time quote (delayed by 20 minutes) for one or more stocks on the Unit-
ed States Stock market. Further details of this service are available from the Socks service
summary page [http://www.xmethods.com/ve2/ViewL isting.po?key=uuid:889A 05A5-5C03-AD9B-

D456-0E54A527EDEE].

In addition to providing financial information, stocks is a pedagogical example that demonstrates the

use of SOAP within MonAMI.

& Caution

The authors of MonAMI expressly disclaim the accuracy, adequacy, or completeness of any data and shall not be
liable for any errors, omissions or other defects in, delays or interruptions in such data, or for any actions taken

in reliance thereon.

Please do not send too many requests. A request every couple of minutes should be sufficient.

Attributes

synbol s string, required

acomma- (or space-) separated list of ticker symbols to moni-
tor. For example, GOOGisthe symbol for Google Inc. and RHT
isthe symbol for RedHat Inc.

24

http://www.xmethods.com/
http://www.xmethods.com/
http://www.xmethods.com/ve2/ViewListing.po?key=uuid:889A05A5-5C03-AD9B-D456-0E54A527EDEE
http://www.xmethods.com/ve2/ViewListing.po?key=uuid:889A05A5-5C03-AD9B-D456-0E54A527EDEE
http://www.xmethods.com/ve2/ViewListing.po?key=uuid:889A05A5-5C03-AD9B-D456-0E54A527EDEE
http://www.xmethods.com/ve2/ViewListing.po?key=uuid:889A05A5-5C03-AD9B-D456-0E54A527EDEE

Configuring MonAMI

3.4.13. TCP

The tcp monitoring plugin provides information about the number of TCP socketsin aparticular state.
Here, a socket is either a TCP connection to some machine or the ability to receive a particular con-
nection (i.e., that the local machineis “listening” for incoming connections).

A tcp monitoring target takes an arbitrary number of count attributes. The value of acount at-
tributes describes how to report the number of matching sockets and the criteriafor including a socket
within that count. These attributestake valueslike: nane [condl, cond2, ...],wherenane
isthe name used to report the number of matching TCP sockets. The conditions(condl1, cond2, etc.)
are comma-separated keyword-value pairs (e.g., st at e=ESTABLI SHED). A socket must match all
conditions to be included in the count.

The condition keywords may be any of the following:

| ocal _addr The local | P address to which the socket is bound. This may be useful on mul-
ti-homed machines for sockets bound to a single interface.

renot e_addr Theremote | P address of the socket, if connected.

 ocal _port The port on the local machine. This can be the numerical value or acommon name
for the port, asdefinedin/ et ¢/ ser vi ce.

renot e_port The port on the remote machine, if connected. This can be the numerical value or
acommon name for the port.

port A socket's local or remote port must match. This can be the numerical value or a
common name for the port.

state The current state of the socket. Each local socket will bein one of anumber of states
and changes state during the lifetime of a connection. All the states listed below
are valid and may occur naturally on a working system; however, under normal
circumstances some states are transitory: one would not expect a socket to stay in
atransitory state for long. A large and/or increasing number of sockets in one of
these transitory states might indicate a networking problem somewhere.

Thevalid states are listed bel ow. For each state, abrief descriptionisgiven and the
possible subsequent states are listed.

LISTEN A program hasindicated it will receive connectionsfrom re-
mote sites.

Next: SYN_RECV, SYN_SENT
SYN_SENT Either aprogram on the local machineisthe client andis at-
tempting to connect to remote machine, or the local machine
sends data from a LISTENing socket (less likely).
Next: ESTABLISHED, SYN_RECV or CLOSED
SYN_RECV Either aLISTENing socket hasreceived anincoming request
to establish a connection, or both the local and remote ma-
chinesare attempting to connect at the sametime (lesslikely)
Next: ESTABLISHED, FIN_WAIT_1 or CLOSED
ESTABLISHED Data can be sent to/from local and remote site.

Next: FIN_WAIT_1 or CLOSE_WAIT
25

Configuring MonAMI

FIN WAIT 1

FIN_WAIT 2

CLOSING

TIME_WAIT

CLOSE_WAIT

LASK_ACK

CLOSED

CONNECTING

DISCONNECT-
ING

Start of an active close. The application on local machine has
closed the connection. Indication of this has been sent to the
remote machine.

Next: FIN_WAIT_2, CLOSING or TIME_WAIT

Remote machine has acknowledged that local application
has closed the connection.

Next: TIME_WAIT

Both local and remote applications have closed their connec-
tions “simultaneously”, but remote machine has not yet ac-
knowledged that the local application has closed the local
connection.

Next: TIME_WAIT

Local connection is closed and we know the remote site
knows this. We know the remote site's connection is closed,
but we don't know if the remote site know that we know this.
(It is possible that the last ACK packet was lost and, after a
timeout, the remote sitewill retransmit thefinal FIN packet.)

To prevent the potential packet loss (of the local machine's
final ACK) from accidentally closing afresh connection, the
socket will stay inthis state for twice MSL timeout (depend-
ing on implementation, a minute or so).

Next: CLOSED

The start of a passive close. The application on the remote
machine has closed its end of the connection. The local ap-
plication has not yet closed this end of the connection.
Next: LASK_ACK

Local application has closed its end of the connection. This
has been sent to the remote machine but the remote machine
has not yet acknowledged this.

Next: CLOSED

The socket is not in use.

Next: LISTEN or SYN_SENT

A pseudo state. The transitory states when starting a connec-
tion match, specifically either SYN_SENT or SYN_RECV.

A pseudo state. The transitory states when shutting down
a connection match, specifically any of FIN_WAIT 1,
FIN_WAIT_2, CLOSING, TIME_WAIT, CLOSE_WAIT
or LASK_ACK match.

The states ESTABLISHED and LISTEN are long-lived states. It is natural to find sockets that arein

these states for extended periods.

For applications that use “half-closed” connections, the FIN_WAIT_2 and TIME_WAIT states are
less transitory. As the name suggests, half-closed connections alows data to flow in one direction

26

Configuring MonAMI

only. Itisachieved by the application that no longer wishes to send data closing their connection (see
FIN_WAIT_1 above), whilst the application wishing to continue sending data does nothing (and so
suffers apassive close). Once the half-closed connection is established, the active close socket (which
can no longer send data) will bein FIN_WAIT_2, whilst the passive close socket (which can still send
data) will bein CLOSE_WAIT.

There aretwo pseudo states for the normal transitory states: CONNECTING and DISCONNECTING.
They areintended to help catch networking or software problems.

The following example checks whether an application islistening on three well-known port numbers.
This might be used as a check whether services are running as expected.

[tep]
name = |istening
count = ssh [l ocal _port=ssh, state=LISTEN]
count = ftp [port=ftp, state=LISTEN|
count = nysql [l ocal _port=nysqgl, state=LISTEN|

Thefollowing exampl e records the number of connectionsto awebserver. Theest abl i shed metric
records the connections where datamay flow in either direction. The other two metrics record connec-
tionsin the two pseudo states. Normal traffic should not stay long in these pseudo states; connections
that persist in these states may be symptomatic of some problem.

[tep]
name = incom ng_web_con
count = established [l ocal _port=80, state=ESTABLI SHED]
count = connecting [l ocal _port=80, state=CONNECTI NG
count = disconnecting [|ocal _port=80, state=D SCONNECTI NG
Attributes
count string, optional the nameto report for this metric followed by square brackets con-

taining acomma-separated list of conditions a socket must satisfy
to be included in the count. This option may be repeated for mul-
tiple TCP connection counts.

The conditions are keyword-value pairs, separated by =, with
the following valid keywords. | ocal _addr, r enpot e_addr,
| ocal _port,renpote_port,port,state.

The st ate keyword can have one of the following TCP
states: LISTEN, SYN_RECV, SYN_SENT, ESTABLISHED,
CLOSED, FIN_WAIT_1, FIN_WAIT_2, CLOSE WAIT,
CLOSING, TIME_WAIT, LASK_ACK; or one of the following
two pseudo states: CONNECTING, DISCONNECTING.

3.4.14. Tomcat

Apache Tomcat is one of the projects from the Apache Software Foundation. It is a Java-based appli-
cation server (or servlet container) based on Java Servlet and JavaServer Pages technol ogies. Servlets
and JSP are defined under Sun's Java Community Process. More information about Tomcat can be
found at the Apache Tomcat home page [http://tomcat.apache.org/].

Also under development of the Java Community Process is the Java Monitoring eXtensions (J MX).
JMX provides astandard method of instrumenting servlets and J SPs, allowing remote monitoring and
control of Java applications and servlets.

Thetomcat plugin usesthe J MX-proxy servlet to monitor (potentially) arbitrary aspectsof aServiet and
JSPs. This provides structured plain-text output from Tomcat's JMX MBean interface. Applications
that require monitoring should connect to that interface for MonAMI to discover their data.

27

http://tomcat.apache.org/
http://tomcat.apache.org/

Configuring MonAMI

To monitor a custom servlet, the required instrumentation within the servlet/J SP must be written.
Currently, there is an additional light-weight conversion needed within MonAMI, adding some extra
information about the monitored data. Sample code exists that monitors aspects of the Tomcat server
itself.

Any tomcat monitoring target will need a username and password that matches a valid account
within the Tomcat server that has the manager role. This is normally configured in the file
$CATALI NA_HOWVE/ conf/t ontat - users. xnl . Including the following line within this file
creates anew user monami , with password monami - secr et and manager role, to Tomcat.

<user usernane="nonam " password="nonanm -secret" rol es="nanager"/>

Thisline should be added within the <t ontat - user s> context.

@ Warning

Be aware that Basic authentication sends the username and password unencrypted over the network. These values
are at risk if packets can be captured. If you are not sure, you should run MonAMI on the same server as Tomcat.

In addition to connecting to Tomcat, you also need to specify which classes of information you wish
to monitor. The following are available: ThreadPool and Connector. To monitor some aspect, you
must specify the object type along with the identifier for that object within the monitoring definition.
For example:

[tontat]

nane = | ocal -tontat
Thr eadPool = http-8080
Connector = 8080

ThreadPool monitors a named thread pool (e.g., ht t p- 8080), monitoring the following quantities:

minSpareT hreads the minimum number of threads the server will maintain.

currentThreadsBusy the number of threads that are either actively processing a request or
waiting for input.

currentThreadCount total number of threads within this ThreadPool.

maxSpareThreads if the number of spare threads exceedsthis value, the excess are deleted.

maxThreads an absolute maximum number of threads.

threadPriority the priority at which the threads run.

The Connector monitors a ConnectorMBean and is identified by which port it listens on. It monitors
the following quantities:

allowTrace Can we trace the output?

clientAuth Did the client authenticate?
compression I's the connection compressed?
disableUploadTimeout Is the upload timeout disabled?
emptySessionPath Isthere no session?

enabl el ookups Are lookups enabled?

tcpNoDelay Isthe TCP SO_NCDELAY flag set?
useBodyEncodingForURI doesthe URI contain body information?

28

Configuring MonAMI

secure

acceptCount

bufferSize
connectionLinger
connectionTimeout
connectionUploadTimeout
maxHttpHeaderSize
maxK eepAliveRequests
maxPostSize
maxSpareT hreads
maxThreads

minSpareT hreads
threadPriority

port

poxyPort

redirectPort

protocol

sslProtocol

scheme

Attributes

are the connections secure?

number of pending connectionsthis Connector will accept before
rejecting incoming connections.

size of the input buffer.

how long the connection lingers, waiting for other connections.
the timeout for this connection.

the timeout for uploads.

the maximum size for HT TP header.

how many keep-alives before the connection is considered dead.
maximum size of the information POSTed.

c.f. ThreadPool

c.f. ThreadPool

c.f. ThreadPool

c.f. ThreadPool

the port on which this connector listens.

the proxy port associated with this connector.

the port to which this connector will redirect.

which protocol the connector uses (e.g., HTTP/ 1. 1)

the SSL protocol the connector uses (e.g., TLS)

which schemethe URI will use (e.g., ht t p, ht t ps)

The tomcat monitoring target accepts the following options:

host string, optiona

port integer, optional

j mxpat h string, optional

user namne string, optiona

passwor d string, optional

3.4.15. Torque

The Torque homepage

the hostname of the machine to monitor. The default value is
| ocal host.

the TCP port on which Tomcat listens. The default valueis 8080
the path to the JMX-proxy servlet within the application serv-
er URI namespace. The default path is / manager/j nx-

pr oxy/

the username to use when completing Basic authentication.

the password to use when completing Basic authentication.

[http://www.clusterresources.com/pages/products/torque-re-

source-manager.php] describes Torque as “an open source resource manager providing control over

29

http://www.clusterresources.com/pages/products/torque-resource-manager.php
http://www.clusterresources.com/pages/products/torque-resource-manager.php
http://www.clusterresources.com/pages/products/torque-resource-manager.php

Configuring MonAMI

batch jobs and distributed compute nodes.” Torque was based on the original PBS/Open-PBS project,
but incorporates many new features. It is now awidely used batch control system.

Torqueis heavily influenced by the IEEE 1003.1 specification, in particular Section 3 (Batch Eviron-
ment Services) [http://www.opengroup.org/onlinepubs/009695399/utilities/xcu_chap03.html] of the
Shell & Utilities volume. However, it also includes some additional features, such as support for jobs
inthesuspended state.

Access control

Torque uses username-and-host based authorisation. Users may query the status of their own jobs,
but may require special privilegesto view the status of all jobs. Because of this, the MonAMI torque
plugin may require authorisation to gather monitoring information.

To grant torque sufficient privileges to conduct its monitoring, the Torque server must have either
query_ot her _j obs settoTr ue (alowing all usersto see other user'sjob information) or havethe
MonAMI user (typically monam) and host added as one of the oper at or s. Setting either option
is sufficient and both can be achieved using the gmgr command.

Thecommandqngr -ac "list server query_ot her_jobs" will display thecurrent value
of query_ot her j obs. Toallow all usersto see other user'sjob status, run the command: qngr
-ac "set server query_other_jobs = True".

Thecommand qnmgr -ac "list server operators" will display the current list of oper-
ators. To add user nonani running on host non- hg. exanpl e. or g as another operator, use the
commandqngr -ac "set server operators += npnam @mon- hg. exanpl e. org"”.

Queue groups

It is often useful to group together multiple execution queues when generating statistics. The group
may represent queues with a similar purpose, or the group represents a set of queues that support a
wider community. MonAMI supports this by allowing the definition of queue-groups and will report
statistics for each of these groups.

A queue-group is defined by including agr oup attribute in the torque target. Multiple groups can be
defined by repeating the gr oup attributes, one attribute for each group.

A gr oup attribute'svalue definesthegroup like: nane : queuel, queue2, ...,wherenamne
isthe name of the queue-group and queuel isthefirst queueto beincluded, queue?2 the second, and
so on. The group statistics are generated based on all jobsthat have any of the listed execution queues.

Asan example, the following torque stanza defines four groups: HEP, LHC, G'i d OPS, and Local .

[torque]

group = HEP : alice, atlas, babar, dzero, |hcb, cns, zeus
group = LHC : atlas, lhcb, cns, alice
group = Gid OPS : dteam ops
group = Local : bioned, carnont, glbio, glee
Attributes
host string, optional the hostname of the Torque server. If not specified, a default val-
ue will be used, which is specified externally to MonAMI. This
default may bel ocal host or may be configured to whatever is
the most appropriate Torque server.
gr oup string, optional definesanew queue-group that statistics are collected against. The

group vaueislike: name : queuel, queue2,Each

30

http://www.opengroup.org/onlinepubs/009695399/utilities/xcu_chap03.html
http://www.opengroup.org/onlinepubs/009695399/utilities/xcu_chap03.html
http://www.opengroup.org/onlinepubs/009695399/utilities/xcu_chap03.html

Configuring MonAMI

Torque queue may appear in any number (zero or more) of queue-
group definitions.

3.4.16. Varnish

The Varnish home page [http://varnish.projects.linpro.no/] describes Varnish as a “state-of-the-art,
high-performance HTTP accelerator. Varnish is targeted primarily at the Fr eeBSD 6/7 and Li nux
2.6 platforms, and takesfull advantage of thevirtual memory system and advanced /O features offered
by these operating systems.”

Varnish offers a management interface. The MonAMI varnish plugin connects to this this interface
and request the server's current set of statistics.

Attributes
host string, optional the host on which Varnish isrunning. Defaultis| ocal host .
port integer, optional the TCP port on which the Varnish management interface is lis-

tening. The default value is 6082.

3.5. Reporting plugins

Information needs to go somewhere for it to be useful. MonAMI's job is to take data from one or
more monitoring targets and send it somewhere or (more often) to multiple destinations. Reporting
plugins deal with “sending data somewhere”’ and the reporting targets are configured reporting plugins
to which data can be sent.

Aswith monitoring targets, al reporting targets need a unique name. By default areporting target will
adopt the plugin's name. As with monitoring targets, it is recommended to set a unique, meaningful
name for each reporting target in complex configurations.

3.5.1. filelog

The filelog plugin stores information within a file. The file format is deliberately similar to standard
log files, as found in the / var / | og filesystem hierarchy. New data is appended to the end of the
file. Fields are separated by tab characters and each line is prefixed by the date and time when the
data was taken.

If the file does not exist, it is created. When thefileis created, a header line is added before any data.
This line starts with the hash (#) symbol, indicating that the line does not contain data. The header
consists of atab-separated list of headingsfor the data. Thislist iscorrect for thefirst row of data. If the
datais aggregated from multiple monitoring targets, then the order of those targets is not guaranteed.

Attributes

fil enane string, required the full path of the file into which data will be stored.

3.5.2. FluidSynth

The FluidSynth project provides code (alibrary and a program) that accepts MIDI (a standard music
interface) information and provides a MIDI-like API, providing high-quality audio output. The flu-
idsynth software is based on the SoundFont file format. Each SoundFont file contains sufficient infor-
mation to reproduce the sound from one or more musical instruments. These SoundFont files might
includeinstruments of an orchestra, special effects(e.g., explosions) or soundstaken from nature (e.g.,
thunder or a dog barking). More information about fluidsynth can be found on the fluidsynth home
page [http://www.nongnu.org/fluid/].

31

http://varnish.projects.linpro.no/
http://varnish.projects.linpro.no/
http://www.nongnu.org/fluid/
http://www.nongnu.org/fluid/
http://www.nongnu.org/fluid/

Configuring MonAMI

The fluidsynth plugin renders information as sound. The presence of sound might indicate a problem,
or the pitch of the note might indicate how hard some application is working.

To achieve sound, the plugin either connects to some fluidsynth program or usesthe fluidsynth library
AP, depending on how it isconfigured. If the configuration specifiesahost attribute, then the plugin
will attempt to connect to the fluidsynth program running on that host. If no host attribute is speci-
fied, then the fluidsynth plugin will use the fluidsynth library to configure and start a new fluidsynth
instance.

When running the embedded fluidsyth code, the plugin requires at least one soundf ont attribute.
These attributes describe where the SoundFont files arelocated. Each soundf ont attributeisacom-
ma-separated list, specifying the short namefor that file (used for thenot e attributes) and the location
of the SoundFont file: short nane, path to SoundFont file

An example soundf ont attributeis:

soundfont = hi, /usr/share/ SoundFonts/Hamered_I| nstrunents. sf2

Using remote fluidsynth

When the pluginis connecting to a SoundFont program running independent of MonAMI, al sound-
f ont attributes are ignored. Instead, all SoundFonts must be loaded independently of MonAMI. The
easiest way of achieving thisit to specify the SoundFont files as command-line options. For example:

fluidsynth -nis /usr/share/ SoundFont s/ Hanmer ed_I nstrunents. sf2

Making sounds

The not e attributes describe how sound is generated. The attribute has seven comma-separated val-
ues, like this:

note = sf, bank, pgm note-range, duration, source, data-range

These attributes have the following meanings.

sf (string or integer) When no host attribute has been specified (i.e. using the flu-
idsynth library API), thisis the short name for the SoundFont
to use asdescribed in soundf ont attributes.

When connecting to a fluidsynth program, this is the (integer)
number of the SoundFont to use. The first loaded SoundFont
fileis numbered 1.

bank (integer) This is the MIDI bank within the SoundFont to use. A MIDI
bank is often afamily of similar instruments. The avail able op-
tions will depend the loaded SoundFont files, but most Sound-
Fonts will define instrumentsin bank 0.

pgm(integer) This is the MIDI program to use for this note. A program is
a unigue number for an instrument within a specified MIDI
bank. General-MIDI defines certain programs to be named in-
struments, some SoundFonts follow General-MIDI for bank O.

not e- r ange (integer or integer This details which notes (pitches) might be played. For exam-

range) ple, not e- r ange might be 53 if only a single note pitch is
needed, or 20- 59 to specify a range of notes. The range of
notes must specify the lower note first.

32

Configuring MonAMI

dur at i on (integer) This is the duration of the note, in tenths of a second (or de-
ciseconds). A dur at i on of 20 results in a two-second note
and 5 resultsin notesthat last for half a second (500 ms).

sour ce (string) This is the path in a datatree for the information. The metric
can be an integer number, a floating-point number or a string.

If themetricisaninteger or floating-point number then the met-
ric value is used to decide whether the note should be played
and if so, at which pitch.

If the metric has type string, then the metric's valueis checked
to seeif anote should be played. For string metrics, thenot e-
r ange should be asingle note.

dat a- r ange (string or numeri- Thisisthe valid range of datathat will produce a note.

cal range)
If the metric has astring value, then the dat a- r ange should
be a string. If the metric matches the string value, a note will
be played.

If the metric has a numerical result, the dat a- r ange should
be arange (e.g., 0- 10 or 10- 0).

Metric valuesin that range will cause a note to be played. The
pitch of the note increases asthe metric valuetendstowardsthe
second number. With the dat a- r ange 0- 10 ametric value
of 10 produces the highest pitch note; with the dat a- r ange
10- 0 ametric value of 0 produces the highest pitch note.

Either number (or both) can be sufficed by a caret symbol (*)
indicating that numbers outside the range should be truncated
to thisvalue. A dat a- r ange of 0- 10” indicates that met-
ric values greater than 10 should produce notes as if 10 was
observed, but that any measurements less than 0 should be ig-
nored, and so not played.

Here are some example not e attributes with brief explanations.

note = hi, 0, 35, 60, 10, apache.severity, error

Play note 60 of program (instrument) 35, bank O of the hi SoundFont file for a duration of 10 de-
ciseconds (or 1 s) if theapache. severi ty metrichasavalueof er r or . If the datatree provided
containsno apache. severi ty then no note is sounded.

note = 1, 0, 3, 38-80, 2, apache.transferred, 0 - 4096"

Play program (instrument) 3, bank 0 of the first loaded SoundFont for 2 decisecond (0.2 s) with the
pitch dependant on the size transferred. The note range is 38 to 80, with corresponding values of 0 kB
to 4 kB: higher metric valuesresult in higher pitch notes. Values of transfer size greater than 4 kB are
played, but truncated, resulting in anote at pitch 80 being played.

note = hi, 0, 75, 60-80, 4, apache. Threads.waiting, 10" - O

Play program 75, bank 0 of the hi SoundFont for 4 deciseconds (0.4 s) based on the number of threads
inwai ti ng state. Note 80 is played when 10 (or more) threads are in waiting state; note 60 if there
isno thread in this state; if there are 1 to 9 threads, the results are somewhere in between.

33

Configuring MonAMI

There are a number of other options that may improve the performance of the embedded fluidsynth
engine. They are described briefly in the summary of this plugin's options below,

Attributes

3.5.3.

soundf ont string, ignored/re-
quired

not e string, required

buf si ze integer, optional

buf count integer, optiona
dri ver string, optional

al sadevi ce string, optional

sanpl er at e integer, optional

r ever b integer, optional

chor us integer, optional

maxnot es integer, optional

Ganglia

a comma-separated list of a nickname and an absolute path to
the SoundFont file. The attribute may be repeated to load mul-
tiple SoundFont files. When using the fluidsynth library, the
soundf ont attributes are required; when connecting to a ex-
ternal fluidsynth program these attributes are ignored.

Each not e attribute indicates sensitivity to some metric's val-
ue. Multiple not e attributes may be specified, one for each
metric.

The not e attribute values are a comma-separated list. The
seven items are: the SoundFont short-name or instance count,
bank (integer), program (integer), note-range, duration (inte-
ger), source (datatree path), data-range. The SoundFont short-
name is defined by the soundf ont attribute.

the desired size for the audio buffers, in Bytes. Thisisignored
when connecting to an external fluidsynth program.

how many audio buffers there should be. Each buffer has size
givenby thebuf si ze attribute. Thisattributeisignored when
connecting to an external fluidsynth program.

the output driver. The default is“ALSA”. Other common pos-
sibilitiesare*OSS’ and“ JACK”. Thisattributeisignored when
connecting to an external fluidsynth program.

the output ALSA device. Within MonAMI, the default is
“hw. 0” due to performance issues with the ALSA default de-
vice“def aul t ”. Thisattribute isignored when connecting to
an external fluidsynth program.

the sample rate to use (in Hz). The default will be something
appropriate for the sound hardware. This attribute is ignored
when connecting to an external fluidsynth program.

whether the reverb effect should be enabled. “0” indicates dis-
abled, “1” enabled. Default is enabled. Disabling reverb may
reduce CPU impact of running fluidsynth. This attribute isig-
nored when connecting to an external fluidsynth program.

whether the chorus effect should be enabled. “0” indicates dis-
abled, “1” enabled. Default is enabled. Disabling chorus may
reduce CPU impact of running fluidsynth. This attribute isig-
nored when connecting to an external fluidsynth program.

the maximum number of concurrent notes. If more than this
is attempted, some notes may be silenced prematurely. This
attribute is ignored when connecting to an external fluidsynth
program.

Gangliaisamonitoring system that allows multiple statistics to be gathered from many machines and
those statistics plotted over different time-periods. By default, it uses multicast to communicate within

34

Configuring MonAMI

a cluster, and allows results from multiple clusters to collated as a single “grid”. More information
about Ganglia can be found within the Ganglia project site [http://ganglia.sourceforge.net/] and a
review of the Gangliaarchitectureis presented in the paper the ganglia distributed monitoring system:

design, implementation, and experience. [http://ganglia.info/papers/science.pdf].

dpm. filesystems._gridstored.used dpm. filesystems._gridstorel.used

5.0H 1000 k
moanm -
£ £ oook
30m
200 k

Wesk 09 Wesk 10 Week 11 Week 12 Wesk 09 Wesk 10 Week 11 Week 12
W svr018.gla.scotgrid.ac.uk last month (now 4,232,618) M svr0l8.gla.scotgrid.ac.uk last month (now 995,580)

dpm. filesystems._gridstore2.used dpm. filesystems._gridstore3.used

1000 K 1000 K
- ‘ o k‘
200 k 200 k
Week 03 Week 10 Week 11 Week 12 Week 03 Week 10 Week 11 Week 12
B svr0l8.gla.scotgrid.ac.uk last month {new 979,361) B svr0l8 . gla.scotgrid.ac.uk last month {now 999,430)
tep.dpm-timewait tep.dpm
n o n 200
o o
k= k=
5 1 Y 100
o)
Week 09 Week 10 Week 11 Week 12 Wesk 09 Week 101 Week 11 Week 12
B svr018.gla.scotgrid.ac.uk last month (now 2.00) B svr0l8.gla.scotgrid.ac.uk last month (now 0.00)
tep.dpns-timewait tecp.dpns
300
» o 150 &
© b 200
£ 100 z
a EE) 5o
Week 63 Week 10 Week 11 Week 12 Week 63 Week 10 Week 11 Week 12
B svr0l8.gla.scotgrid.ac.uk last month (now 8.00) B svr0l8.gla.scotgrid.ac.uk last month (now 8.00)

Figure 3.2. Ganglia graphs showing data from dpm and tcp tar gets

Ganglia comes with a standard monitoring daemon (gmond) that monitors a standard set of statistics
about aparticular machine. It also includes acommand-line utility (gmetric) that allowsfor therecord-
ing of additional metrics.

The MonAMI ganglia plugin emulates the gmetric program and can send additional metrics within a
Ganglia-monitoring cluster. These appear automatically on the ganglia web-pages, either graphically
(for graphable metrics) or as measured values.

/g Note

Please note that thereisabug in Ganglia prior to v3.0.0 that can result in data corruption when adding custom data.
MonAMI will trigger this bug, so it is strongly recommended to upgrade Ganglia to the latest version.

Network configuration

The Gangliagmond daemon |loadsits configuration from afilegnond. conf . For some distributions,
thisfileislocated at/ et ¢/ gnond. conf , for otheritisfoundat/ et ¢/ gangl i a/ gnond. conf .
The ganglia plugin can parse the gnond. conf file to discover how it should deliver packets. It
searches both standard locations for a suitable file. If found, it will use the setting contained within
the file, so no further configuration is necessary. If a suitable gmond configuration file exists at some
other location, the plugin can still useit. Theconf i g attribute can be set to the config file's location.

Although it is recommended to run MonAMI in conjunction with gmond, this is not a requirement.
In the absence of a suitable gmond configuration file, the multicast channel and port to which metric
updates should be sent can be set with the mul ti cast _i p_address and nul ti cast _port
attributes respectively. By default, the kernel will choose to which network interface the multi-
cast traffic is sent. If this decision is wrong, the interface can be specified explicitly using the the
mul ti cast _if attribute.

Serialisation

MonAMI uses a tree-structure for storing metrics internally. In contrast, Ganglia uses a flat name-
space for its metrics. To send datato Ganglia, the metric names must be “flattened” to a simple name.

35

http://ganglia.sourceforge.net/
http://ganglia.sourceforge.net/
http://ganglia.info/papers/science.pdf
http://ganglia.info/papers/science.pdf
http://ganglia.info/papers/science.pdf

Configuring MonAMI

To obtain the Ganglia metric name, the elements of the metric's path are concatenated, separated by
aperiod (.) character. For example, the metric t or que. Schedul er . peri od is the period, in
seconds, between successive calls Torque makes to the scheduler (see Section 3.4.15, “Torque”).

Since the period character has a special meaning to the ganglia plugin, it is recommended to avoid
using this character elsawhere, for example, within torque group names. Although there are no prob-
lems with sending the resulting metrics, it introduces a source of potential confusion.

Avoiding metric loss

Gangliauses multicast UDP traffic for metric updates, which isunreliable protocol. Unlikethereliable
TCP protocol, UDP has no mechanismsfor detecting if a packet was not delivered or for retransmitting
missing data. However, over local area networks it is very unlikely that the network packets will be
lost.

If alarge number of metrics are updated at the same time, there is a corresponding deluge of packets.
If these packets are delivered too quickly, the recipient gmond process may not be able to keep up.
Those packets not accepted immediately by gmond will be held in a backlog queue, allowing gmond
to process them when free. However, if the size of this backlog queue exceeds a threshold, further
packets will not be queued and gmond will not see the corresponding metric update messages. The
threshold varies, but observed values are in the range 220450 packets.

Toreducetherisk of metric updates being lost, the MonAMI ganglia plugin will pause after delivering
amultiple of 50 metric updates. By default the pauseis 100 ms, but thedel i very_pause attribute
can be used to fine-tune this behaviour. Under normal circumstances, thedefault del i very _pause
value results in anegligible risk of metric updates being lost. However, if the machine receiving the
metrics is under heavy load you may notice metrics being dropped.

To further reduce the risk of metric update loss, monitoring activity can be split into separate activities
that are triggered at different times. In the following example, two monitoring targets (t or que and
maui) are sampled every minute with all metrics sent to Ganglia.

[torque]
cache = 60

[maui]
cache = 60

[sanpl e]

interval = 1m

read = torque, maui
wite = ganglia

[gangl i a]

If the resulting datatree has too many metrics there will be arisk that some of metric updates will be
lost. To reduce therisk of this, the same monitoring can be achieved by splitting the activity into two
parts. The following example shows the same monitoring but split into two independent activities.
Both monitoring targets are monitored every minute but now at different times.

[torque]
cache = 60

[mawi]
cache = 60

[sanpl e]

interval = 1m
read = torque
wite = ganglia

[sanpl e]

36

Configuring MonAMI

dmax

interval = 1m
read = maui
wite = ganglia

[gangli a]

An aternative approach isto increase the UDP packet buffer size. Increasing the buffer sizewill allow
more packets to be queued before metric updates are lost. The following set of commands, run as root,
will restart gmond with alarger network receive buffer (N.B. the hash character represents the prompt
and should not be typed).

orig_defaul t=$(cat /proc/sys/core/rmemdefault)

cat /proc/sys/net/core/rmemmax > /proc/sys/net/core/ rmemdefault
service gnond restart

echo $orig_default > /proc/sys/net/core/ rmemdefault

Another method of settingr mem def aul t istousethe/ et ¢/ sysct| . conf file. A sampleentry
is given below:

Enlarge the value of rmemdefault for gnond. Be sure to check the
nunber against /proc/sys/net/core/rnmemmx.
net.core.rnmemdefaul t=131071

Each metric has a corresponding dmax value. This value specifies when Ganglia should consider the
metric as no longer being monitored. If a metric has not been updated for dmax seconds Ganglia
will remove it. Graphs showing historical data are not purged; however, when delivery of the metric
resumes there may be a corresponding gap in the historical data.

Asaspecial case, if ametric'sdmax valueis set to zero, Gangliawill never purge that metric. Should
MonAM I stop updating that metric, itslast value will be graphed indefinitely, or until either MonAMI
resumes sending fresh data or the metric is flushed manually (by restarting the gmond daemon).

The optimal value of dmax is a compromise. If the value is set too low then an unusually long delay
whilst gathering data might trigger the metric being purged. If set too high, then Ganglia will take
longer than necessary to notice if MonAMI has stopped sending data.

When updating a metric, a fresh value of dmax is also sent. This allows MonAMI to adjust the dmax
value over time. For event-driven data the default value is zero, effectively disabling the automatic
removal of data. With internally triggered data (e.g., data collected using a sampletarget), the value of
dmax is calculated taking into account when next dataiis schedul ed to be taken and an estimate of how
long that data acquisition will take. Section 3.3.4, * Estimating future data-gathering delays” describes
how MonAMI estimates the delay in future data-gathering.

Calculating agood value of dmax also requires knowledge of the gmetad polling interval: the time be-
tween successive gmetad requests to gmond. This s specified in the gmetad configuration file (usual-
ly either / et ¢/ gnet ad. conf or/ et ¢/ gangl i a/ gmet ad. conf). Eachdat a_sour ce line
has an optional polling interval value, expressed in seconds. If the polling interval is not specified,
gmetad will use 15 seconds as a default value.

In general, the MonAMI ganglia plugin cannot discovering the gmetad polling interval automatically.
Instead, the dmax cal culation assumesthe polling interval islessthan two minutes. Thisisvery likely
to be sufficient; but, should the gmetad polling interval be longer than two minutes, the correct value
can be specified (in seconds) using the grret ad_pol | attribute.

Separate from estimating a good value of dmax, an explicit dmax value can be specified using the
dmax attribute. For example, setting the dmax attribute to zero will set all metric update's dmax values
to zero unconditionally, so preventing Ganglia from purging any metric.

37

Configuring MonAMI

It is recommended that the default value of dmax is used. If long gmetad polling intervals arein use,
include asuitable grret ad_pol | attribute.

Multiframe extension

Ganglias standard web interface provides a good overview of the metrics supplied by gmond, but for
other metrics are displayed either as a single graph or not at all.

To provide arich view of the data MonAMI collects, an extension to the standard web interface has
been devel oped. This supports creating tables, custom graphs and pie-charts, support for iGoogle and
embedding elements within other pages.

The multiframe extension is currently maintained within the external CVS module [http:/
sourceforge.net/cvs/?group_id=151885]. Instructions on how to install and extend these graphs are

available within that module.

Attributes

3.5.4.

nul ticast i p_address
string, optional

mul ti cast _port integer, op-
tional

host string, optiona

port integer, optional

mul ticast _if string, optiona

conf i g string, optiona

gnet ad_pol | integer, optional

dmax integer, optional

del i very_pause integer, op-
tional

GridView

the multicast IP address to which the data should be sent.
If no IP address is specified, the Ganglia default value of
239.2.11. 71 isused.

the port to which the multicast traffic is sent. If no port is spec-
ified, the Ganglia default port of 8649 is used.

Thel P address of the host to which UDP unicast traffic should
be sent. Specifying this option will switch off sending metrics
as multicast. The default is not to send unicast traffic, but to
send multicast traffic.

the UDP port to which unicast traffic should be sent. If host is
specified and por t isnot then the default port isused. If host
is not specified, then por t has no effect.

the network device through which multicast traffic should be
sent (e.g., “ethl”). If no deviceis specified, adefault is chosen
by the kernel. This default is usually sufficient.

the non-standard location of a gmond configuration file.

the polling interval of gmetad in seconds. This is the time be-
tween successive gmetad requests to gmond. By default, the
plugin assumesthisistwo minutes or less. If thisiswrong, the
correct value is specified using this attribute.

the absolute period, in seconds, after the last metric update af-
ter which Ganglia should remove that metric. A value of zero
disables this automatic purging of metrics. By default, the plu-
gin will estimate a suitable value based on observer behaviour
when gathering data.

the delay in milliseconds between an exact multiple of 50 and
the following metric update. Every 50 UDP packets, the plugin
will pause briefly. The default (100 ms) is an empirical value
that should be sufficient. The minimum and maximum values
are 5 msand 2000 ms.

GridView isaWorldwide LHC Computational Grid (WLCG) project that provides centralised moni-
toring for the WL CG collaboration. It collates information from multiple sources, including R-GMA

38

http://sourceforge.net/cvs/?group_id=151885
http://sourceforge.net/cvs/?group_id=151885
http://sourceforge.net/cvs/?group_id=151885

Configuring MonAMI

and MonalL isa, and displaysthisaggregated information. In addition to accumul ated data, it can accept
data sent directly via a web-service, which is how this reporting plugin works. The protocol allows
arbitrary datato be uploaded. Live dataand further details are available from the GridView homepage
[http://gridview.cern.ch/GRIDVIEW]/].

The gridview plugin implements the GridView protocol, alowing data to be uploaded directly into
GridView. Each datatree sent is directed towards a particular table, as described by the t abl e at-
tribute. Thetable nameisarbitrary and describesthe nature of the dataand containsone or morefields.
The number of fields and each of the fields type is table-specific.

Thesend attribute isacommar-separated list of which data, and in what order dataisto be sent. Each
element of the list isthe name of some element within a datatree; elements are separated by adot (.).
Should any of the elements be missing, the corresponding field sent to GridView will be blank.

Attributes
t abl e string, required the name of the table within GridView to populate with data.
send string, required the comma-separated list of data to send: one entry for each
field. The data should be a path within a datatree using a dot
(.) asthe separator between names within the datatree.
endpoi nt string, optional the SOAP endpoint to which MonAMI should contact. The

3.5.5.

default endpoint is htt p: // gr vw003. cer n. ch: 8080/
wsar ch/ servi ces/ WebAr chi ver Adv

grmonitor

Gr_Monitor isan application that uses the OpenGL API to display monitoring information as a series
of animated 3D bar charts. More information is available from the Gr_Monitor home page [http://
users.actrix.co.nz/michael/grpage.html].

€ localhost Wed Apr 9 08:33:25 2008

Figure 3.3. gr_Monitor showing data from apache and mysgl tar gets

Gr_Monitor uses a flexible XML format for data exchange. This allows it to receive data from a
variety of hel per applications, each of which collect information from different sources. Further custom
applications allow easy expansion of gr_Monitor's capahilities.

Recent versions of gr_Monitor providethefacility to receivethis XML datafrom the network (through
a TCP connection). The MonAMI grmonitor plugin provides a network socket that the gr_Monitor
application can connect to. To connect gr_Monitor to MonAMI, use the -tcp option:

39

http://gridview.cern.ch/GRIDVIEW/
http://gridview.cern.ch/GRIDVIEW/
http://users.actrix.co.nz/michael/grpage.html
http://users.actrix.co.nz/michael/grpage.html
http://users.actrix.co.nz/michael/grpage.html

Configuring MonAMI

gr _noni t or -tcp host name:port

Theoption host nane should be replaced with the hostname of the MonAMI daemon (e.g., | ocal -
host) and port should be replaced by whatever TCP port number MonAMI islistening on (50007
by default).

Metricsfrom adatatree are mapped to positionswithin groups of 3D bar charts, which gr_Monitor then
plots. To configure this mapping, the grmonitor plugin expects at least one of each of the following
attribute: gr oup, et ri c,netricval ,andeitheri t emori tenl i st. All of the attributes may
be repeated.

A group is arectangular collection of metrics, usually with a common theme; for example, in Fig-
ure 3.3, “gr_Monitor showing data from apache and mysql targets’ there are two groups: one shows
Apache thread status, the other shows per-table metrics for a MySQL database. Each group has a
label or title and is displayed as a distinct block in the 3D display. In the MonAMI configuration,
gr oup attribute values have alocal-name for the group, a colon, then the display 1abel for this group.
The group local-name is used when defining how the group should look and the label is passed to
gr_Monitor to be displayed.

Thei t emattribute describes a specific column within a group. Typically, each i t emdescribes one
of alist of things; for example, one filesystem of several mounted, a queue within the set of batch-
system queues, a table within the many a database stores. The i t emvalues have the group short-
name, acomma, an item short-name, a colon, then the display label for thisitem. An item short-name
isused to identify thisi t emand the display label is passed on to gr_Monitor.

A net ri c attribute describes a generic measurable aspect of the items within a group; e.g., used
capacity and free capacity (for filesystems), or number of jobs in running state and number in queued
state for a batch system. The et r i ¢ correspond to the rows of related information shown in Fig-
ure 3.3, “gr_Monitor showing datafrom apache and mysql targets’. Thenet r i ¢ valueshavetheform
group short-name, comma, metric short-name, colon, then the label. The metric short-nameisused to
identify this metric and the label is passed onto gr_Monitor asthe label it should display for thisrow.

Thefinal required attribute typeisnet ri cval . The metricval attributes map the incoming datatree
to bars within the 3D bar-chart. There should be ametricval for each (item,metric) pair in each group.
metricval attribute values have acomma-separated list of group, item and metric short-names, acolon,
then the datatree path for the corresponding MonAMI metric.

Thefollowing example demonstrates configuring agrmonitor target. It definesasingle group “ Torque
gueue info” with threei t ens (columns) “Atlas’, “CMS” and “LHCb”. Each item hastwonet ri ¢
attributes: “Running” and “Queued”. Therret ri cval attributes map an incoming datatree to these
values.

[grnonitor]
group = gl : Torque queue info

netric
nmetric

= gl, mrunning : Running
= g1, maqueued : Queued
item=gl,i_atlas : Atlas

item= gl,i_cns ;. CMB

item=gl,i_lhcb : LHCb
nmetricval = gl,i_atlas, mrunning: \

t or que. Queues. Execut i on. ByQueue. at | as. Jobs. St at e. runni ng
nmetricval = gl,i_atlas, maqueued: \

t or que. Queues. Execut i on. ByQueue. at| as. Jobs. St at e. queued
nmetricval = gl,i_cms, mrunning: \

t or que. Queues. Execut i on. ByQueue. bi oned. Jobs. St at e. runni ng
metricval = gl,i_cns, mqueued: \

t or que. Queues. Execut i on. ByQueue. bi oned. Jobs. St at e. queued

40

Configuring MonAMI

metricval = gl,i_lhcb, mrunning: \
t or que. Queues. Execut i on. ByQueue. | hch. Jobs. St at e. runni ng
metricval = gl,i_l hcb, mqueued: \

t or que. Queues. Execut i on. ByQueue. | hcbh. Jobs. St at e. queued

Usingitemni st

Writing out al net ri cval attributes can be quite tiresome and error prone. The data provided by
a datatree might also change over time, perhaps dynamically whilst MonAMI is running. For these
reasons, MonAMI supports an express method of describing the mapping, which usesthei t en i st
attribute. This makes the mapping more dynamic and its description more compact.

Thei t em i st replacesthe need for specifying i t emattributes explicitly. A group should have at
leastonei t emoritem i st otherwise no datawould be plotted.

Theitem i st atributeis similar to ani t embut, instead of specifying the label, the value after
the colon specifies abranch of the datatree. Specifyingani t eml i st aso affectshow et ri cval
attributes are interpreted.

When a new datatree is received, the grmonitor target will look for the specified branch and will
consider each child entry as an item. For example, if the incoming datatree has abranch aa. bb with
two child branches aa. bb. i t enll and aa. bb. i t en2, specifyinganiten i st attribute with
aa. bb isequivalent to specifyingtwoi t enslabelled “item1” and “item2”. Thisismost useful when
the indicated branch contains alist of similar items.

Theret ri c attributes are as before; they provide the graphical labels for the metrics. There must be
anetri c valuefor each row within the group.

Thenetri cval attributes describe the path within the datatree to the desired metric, relative to
theitem'sbranch. If thei t eml i st specifiesapath aa. bb andthenet ri cval specifiesxx. yy,
thenvalueswill beplottedfor: aa. bb. i t enl. xx. yy (labelled“item1”),aa. bb. i t en2. xx. yy
(labelled “item?2"), etc. These must be valid metrics or they will be ignored.

metri cval attributes may take a special value: asingle dot. This indicates that the immediate chil-
dren of thei t eml i st path should be plotted directly. For example, if ani t eml i st attribute hasa
valueof aa. bb and et ri cval is. thenvaueswill be plotted for aa. bb. i t enl (as”iteml”),
aa. bb.iten? (as“item2”),andsoon. A et ri cval withadot will only plot metricsif theitems
immediately below the itemval branch are metrics, branches will be ignored.

The following example demonstratesi t eml i st and illustrates using both et r i cval to point to
metrics and the special dot value. It createstwo groups: one that plots the number of Apachethread in
each state (for details, see Section 3.4.2, “ Apache”) and another that plots three metrics from MySQL
(see Section 3.4.8, “MySQL"). The MySQL group plots three table-specific metrics for all tablesin
the mysgl database. This is the configuration that produced the output shown above in Figure 3.3,
“gr_Monitor showing data from apache and mysg|l targets’.

[grnonitor]

group = gApache : Apache

itemist = gApache, iThreadState : apache. Threads
metric = gApache, nCount : Count

metricval = gApache, iThreadState, mCount : .

group = gWMysgl @ MYSQL (nysql database)

metric = gWysqgl, nCurlLen : Length

metric = gwsqgl, mdxLen : ldx length

metric = gWsqgl, nRows : Rows

itemist = gWsqgl, iDbMysql: nysql. Database. nysql. Table

metricval = gMysql, iDbMysql, nCurLen : Datafile.current
metricval = gMysql, iDbMysqgl, midxLen : [Indexfile.length
metricval = gMysql, iDbMysqgl, nRows : Rows. count

41

Configuring MonAMI

Attributes

3.5.6.

port integer, optional

gr oup string, at least one

met ri ¢ string, at least one per
group

i t emstring, at least one per group
(if therearenoi tem i st a-
tributes)

i tenl i st string, at least one per
group (if therearenot i t emat-
tributes)

nmetricval string, one per
(group,netric,tem

KsysGuard

the network port on which the plugin will listen. If not speci-
fied, then the default (50007) is used.

definesarectangular set of dataresults, forming a3D bar chart.
Attributevalueshavetheformgr oup nane : group | a-
bel

hold information about a row of data within a group. Attribute
values have the form group nane, netric nane
metric | abel

describes a column of data within a group. Attribute values
havetheformgr oup nanme, itemnane : iteml abel

describes aset of columns of datawithin agroup, by specifying
abranch within the incoming datatree. The immediate child of
this branch are considered part alist of items.

Attribute values havetheform gr oup nare, item name

branch path

Definition of which MonAMI metric maps to a particular lo-
cation within a group. Attributes values have the form gr oup
nane, itemnane, nmetric name : netric path

KSysGuard is a default component of the KDE desktop environment. It is designed for monitoring
computers and separates monitoring into two distinct activities: gathering information and presenting
it to the user. Displaying information is achieved with a GUI program KSysGuard (written using the
KDE framework) whilst gathering data is handled by a small program, ksysguar dd, that can run
as aremote daemon. The ksysguard MonAMI plugin emulates the ksysguar dd program, alowing

KSysGuard to retrieve information.

Flle Edit Settings Help

Sensor Browser
+- % localhost

System Load

DPM | UPS information

+% ppepce5
«- ¥ se2-gla.scotgrid.ac.uk

g

]

« s --

urrent Batt Charge e

117 Processes | Memory: 1,003,524 KB used, 33,280 KB free

Swap: 476 KB used, 33,003,956 KB free

Figure 3.4. KSysGuard showing data from the nut plugin

42

Configuring MonAMI

KSysGuard supports a variety of display-types (different ways of displaying sensor data). Some of
these display-types allow data from multiple sensors to be combined. Worksheets (panels with agrid
of different displays) are easily updated using drag-and-drop and can be saved for later recall.

KSysGuard and ksysguar dd communicate via a documented stream-protocol. Typical default us-
age hasksysguar dd started automatically on the local machine, with communication over the pro-
cess st dout and st derr file-handles.

Collecting data from remote machines is supported by KSysGuard either via ssh or using direct TCP
communication. With the ssh method, the GUI establishes an ssh connection to the remote machine
and executes ksysguar dd (data is transfered through ssh's tunnelling of st dout and st derr).
With the TCP method, KSysGuard establishes aconnection to an existing ksy sguar dd instance that
is running in network-daemon mode.

The MonAMI ksysguard plugin implements the KSysGuard stream-protocol and acts like ksys-
guar dd running as a daemon. By default, it listens on port 3112 (ksysguar dd's default port) and
accepts only local connections. A more liberal access policy can be configured by specifying one or
more al | owattributes.

z Note

Older versions of ksysguard contained a bug that was triggered by a sensor name containing spaces. Thiswasfixed
in KDE v3.5.6 or later.

To view the data provided by MonAMI within KSysGuard, select File - Connect Host, which will
open adialogue box. Enter the hostname of the machine MonAMI is running on in the Host input and
make sure the Connection Type isset to Daemon. Y ou should see the host's name appear within the
sensor-browser tree (on the left of the window). Expanding the hostname will trigger KSysGuard to
guery MonAMI for the list of available metrics. If thislist islong, it can take awhile for KSysGuard
to parse thelist.

Moredetails on how to use KSysGuard can be found in the KSysGuard Handbook [http://docs.kde.org/
devel opment/en/kdebase/ksysguard/].

Within MonAMI, the ksysguard target configured must specify atarget from which the data is re-
guested (viather ead parameter). This source can be either an explicit monitoring plugin (e.g., using
atarget from the apache plugin) or anamed sample target. The named sample can either act solely as
an aggregator for KSysGuard (i.e.,, withnowri t e ori nt er val specified) or can be part of some
other monitoring activity. See Section 3.6, “sample” for more information on sample targets.

The following example shows the ksysguard plugin directly monitoring an Apache server running on
www. exanpl e. or g.

[apache]
host = www. exanpl e. org

[ksysguard]

read = apache

The following example demonstrates how to use a named-sample to monitor multiple monitoring
targets with KSysGuard.

[apache]
name = external -server
host = www. exanpl e. org
[mysal]
nane ext ernal - nysq

host = nysql -serv. exanpl e. org
user = nonani
password = npnami - secr et

43

http://docs.kde.org/development/en/kdebase/ksysguard/
http://docs.kde.org/development/en/kdebase/ksysguard/
http://docs.kde.org/development/en/kdebase/ksysguard/

Configuring MonAMI

cache = 10
[apache]
nane = internal -server

host = www. i ntranet. exanpl e.org

[nysql]
nanme = internal-nysq
host = nysql-serv.intranet.exanple.org
user = nonani
password = npnami - secr et
cache = 10
[sanpl e]
name = ksysguard-info
read = external -server, external-nysql, internal-server, internal-nysq

[ksysguard]
read = ksysguard-info

Attributes
r ead string, required the name of the target from which datais to be requested
por t integer, optional the port on which the ksysguard target will listen for connections.
If no port is specified, then 3112 will use, the default for ksys-
guar dd.
al | owstring, optional a host or subnet from which this plugin will accept connections.

This can be specified as a simple hostname (e.g., nydeskt op),
a fully qualified domain name (e.g., www. exanpl e. comj, an
IPv4 address (e.g., 10. 1. 0. 28), an IPv4 address with anetmask
(eg. 10. 1. 0. 0/ 255. 255. 255. 0) or an IPv4 subnet using
CIDR notation (e.g., 10. 1. 0. 0/ 24).

The pluginwill always accept connectionsfrom| ocal host and
from the host's fully qualified domain name.

This attribute can be repeated to describe all necessary authorised
hosts or networks.

3.5.7. MOnALISA

This plugin pushes information gathered by MonAMI into the MonALISA monitoring system (Mon-
ALISA home page [http://monalisa.cacr.caltech.edu/]). It does this by sending the data within a UDP
packet to aMonALISA-Service (ML-Service) server. ML-Serviceisacomponent of MonALISA that
can be located either on the local site or centrally.

Within the MonALISA (ML) hierarchy, a cluster contains one or more nodes (computers). These
clustersare grouped together into one or morefarms. Farmsare handled by MonALISA-Services (ML-
Services), usually asingle farm per ML-Service. The ML-Service is a daemon that is responsible for
collecting monitoring data, and providing both a temporary store for that data and a means by which
that data can be acquired.

Clients query the data provided by ML-Services via transparent proxies. There are also LookUp Ser-
vices (LUSs) that contain soft-state registrations of the proxies and ML-Services. The LUSs provide
a mechanism by which client requests are load-balanced across different proxies and dynamic data
discovery can happen.

The ML-Servicesacquiredatathrough anumber of MonALISA plugins. Onesuch pluginisXDRUDP,
which allows nodes to send arbitrary data to the ML-Service. The MonALISA team provide an AP

44

http://monalisa.cacr.caltech.edu/
http://monalisa.cacr.caltech.edu/
http://monalisa.cacr.caltech.edu/

Configuring MonAMI

for sending this data called ApMon. It is through the XDRUDP ML-plugin that MonAMI is able to

send gathered data.

Remote

Web-based

overview

“dashboard" | Apache desktop

ML Proxy

Lookup
Service

Local site

Lookup
Service

Ganglia Server

:"!bte a Apache
ronten -
A1 @-

AMI Server (l Web Server \
MonAMI v] =
Ky KA [MonAMIerpe o]
(A
‘ =i =T
f
mysaL

Figure 3.5. Example deployment with key elements of MonALISA shown.

Note that each MonAMI monalisa target reports to a specific host, port, cluster triple. If you wish
to report data to multiple ML-Services or to multiple ML clusters, you must have multiple MonAMI
monalisa targets configured: one for each host or cluster.

Attributes

host string, optiona

port integer, optional

passwor d string, optional

apnon_ver si on string, optional

cl ust er string, required

node string, optional

the hostname of the ML-Service. Thedefault valueisl| ocal -
host .

the port on which the ML-Service listens. The default value is
8884.

the password to access the MonAlisa service.

Warning

The password is sent plain-text: don't share a sensitive password
with MonALISA! By default, no password is sent.

the plugin reports “2.2.0" as an ApMon version string by de-
fault. This option alows you report a different version.

the cluster name to report.

the node name to report. There are two special cases: if the
literal string | P is used, then MonAMI will detect the IP ad-
dress and use that value; if the literal string FQDN is used, then
MonAMI will determine the machine's Fully Qualified Do-
main Name and use that. The default isto report the machine's
FQDN.

45

Configuring MonAMI

3.5.8.

MySQL

In addition to monitoring a MySQL server, the mysgl plugin can aso append monitoring data into a
table. If correctly configured, each datatree the plugin receives will be stored as a new row within a
specified table.

Thetwo MySQL operations (monitoring and storing results) are not mutually exclusive. A mysql target
can be configured to both store data and al so to monitoring the MySQL server it is contacting.

Two attributes are required when using the mysgl plugin for storing results: dat abase andt abl e.
These specify into which MySQL database and table data isto be stored.

If the database named in the dat abase attribute does not exist, no attempt is made to createit. This
will prevent MonAMI from storing any data.

If the table does not exist, the plugin will attempt to create it when it receives data. The plugin deter-
mins the types for each field from the field's corresponding metric. If, when creating the table, afield
attribute has no corresponding metric within the incoming datatree, the corresponding field within the
database tableis created as TEXT.

Privileges

Fields

In order to insert data, the MySQL user the plugin authenticates as must have been granted sufficient
privileges. Additional privileges are needed if you wish to allow the plugin to create missing tables
as needed.

The following SQL commands describes how to create a database mon_db, create a MySQL user
account monami with password nonam - secr et , and grant that user sufficient privilegesto create
tables within the monitoring database and insert new data.

CREATE USER ' nonam ' | DENTI FI ED BY ' nonani - secret"';
CREATE DATABASE non_db;
GRANT CREATE, | NSERT ON non_db. * TO nmonami ;

A lightly more secure, but more awkward solution is to manually create the storage tables. The fol-
lowing SQL commands describe how to create a database mon_db, create an exampl e table roomstats,
create a MySQL user account monami with password monani - secr et , and grant that user suffi-
cient privilegesto insert data only for that table.

CREATE USER ' nonami ' | DENTI FI ED BY ' nonam - secret"';
CREATE DATABASE non_db;
CREATE TABLE roonstats (
col | ected TI MESTAMP,
tenperature FLOAT,
hum dity FLOAT,
ai rconlgood BOOLEAN,
ai rcon2good BOOLEAN);
GRANT | NSERT ON non_db. roonstats TO nonanmi ;

One must describe how to fill in each of the table'sfields. To do this, the configuration should include
severdl f i el d attributes, one for each column of the table.

Afi el dattributevaluehastheform:fiel d : metric pat hwherefi el disthecolumnname
inthe MySQL databaseand et ri ¢ pat h isthe path within the datatree to the metric value.

z The collected field

The collected field isa special case. It stores the timestamp of when the datatree data was obtained. The table must
have a column with this name with type TIMESTAMP. Thisfield isfilled in automatically: there is no need for a
fi el d attribute to describe the collected field.

46

Configuring MonAMI

The following example shows a suitable configuration for storing gathered data within the above
room_stats table. The datatree isfictitious and purely illustrative.

[mysql] _
user = nopnam

password = npnami - secr et
dat abase = non_db

table = roomstats
field = tenperature : probes. probel. tenperature
field = humdity . probes. probel. humidity
field = airconlgood : aircons. airconl. good
field = aircon2good : aircons. ai rcon2. good
Attributes
host string, optional the host on which the MySQL server is running. If no host is
specified, the default | ocal host isused.
user string, required the username with which to log into the server.
passwor d string, required the password with which to log into the server
dat abase string, required the database in which the storage tableisfound. If this database
does not exist then no data can be stored.
t abl e string, required the table into which data is stored. If the table does not exist,
itis created automatically.
fi el d string, at least one amapping between ametric from adatatree and adatabasefield
name. This attribute should be specified for each table column
and hastheformfield : datatree path
3.5.9. Nagios

Nagios is a monitoring system that provides sophisticated service-status monitoring: whether a
service's status is OK, Warning or Critical. Its strengths include support for escalation and flexible
support for notification and potentially automated service recovery. A complete description of Nagios
isavailable at the Nagios home page [http://nagios.org/].

Service Status Details For All

Hosts
grid NTP sarver oK 05-13:2007 17:20:31 10d 4h 32m 155 14 NTP OK: Offset 0000183105488 secs
PING oK 05-12-2007 17:20:46 12d 23h 54m 3= 174 PING OK - Packet loss = 0%, RTA = 0.04 ms.
SS5H oK 05132007 17:27:01 4d 2h Mm B 14 S5H 0K - OpenSSH_3.9p1 (protocal 2.0)
TEMPERATURE_326a T oK 05.13.2007 17-30:30 Od 1h 8m 35 43 MonAMI: ups. 3262 ambiant
. 4_{ L im ! =0C
TEMPERATURE_DEVCLUSTER] | DK 05-13:2007 17:30:30 0d 1h 5m 68 /3 MianAMI: ups. GridDev. ups temperature = 36.0 C

Figure 3.6. Nagios service status page showing two MonAM I -provided outputs.

The Nagios monitoring architecture has a single Nagios central server. This Nagios server maintains
the current status of all monitored hosts and the services offered by those hosts. It is the central Na-
gios server that maintains awebpage front-end and that responds to status changes. For remote hosts,
Nagios offers two methods of receiving status updates: active and passive.

Active queries are where the Nagios server initiates a connection to the remote server, requests infor-
mation, then processes the result. This requires a daemon (npre) to be running and a sufficient subset
of the monitoring scripts to be installed on the remote machine.

47

http://nagios.org/
http://nagios.org/

Configuring MonAMI

With passive queries, the remote site sends status updates to the Nagios server, either periodicaly
or triggered by some event. To receive these messages, the Nagios server must either run the nsca
program as a daemon, or run ainetd-like daemon to run nsca on-demand.

& Caution

Thereisabug in some versions of the nsca program. When triggered, nsca will go into atight-loop, so preventing
updates and consuming CPU. This bug was fixed with version 2.7.2. Make sure you have at least this version
installed.

MonAMI will send status information to the Nagios server. This follows the passive query usage, so
nsca must be working for Nagios to accept data from MonAMI.

Nagios and nsca

This section gives a brief overview of how to configure Nagios to accept passive monitoring results
as provided by nsca. Active monitoring is the default mode of operation and often Nagiosis deployed
with passive monitoring disabled. Several steps may be required to enable it. The information here
should be read in conjunction with the Nagios documentation [http://nagios.org/docs/]. Also, if nsca
is packaged separately, make sure the package isinstalled.

/g L ocation of Nagios configuration

The Nagios configuration files are located either in / et ¢ or, with more recent packages, in/ et ¢/ nagi os. Itis
also possible that they may be stored elsewhere, depending on the local installation. For this reason, when Nagios
configuration files are mentioned, just their base name will be given rather than the full path.

To run nsca as part of an xinetd make sure there is a suitable xinetd configuration file (usually locat-
edin/ et ¢/ xi net d. d). Some packages also include suitable configuration for xinetd, but usually
disabled by default. To enable nsca, make surethe di sabl ed field within the nsca's xinetd-config-
uration fileis set to no and restart xinetd.

To run nsca as part of inetd, add a suitable line to the inetd configuration file/ et ¢/ i net d. conf
and restart inetd.

To run nsca as a daemon, independent of any inetd-like service, make sure no inetd-like service has
adopted nsca (e.g., set di sabl ed in the corresponding xinetd configuration file to yes, or com-
ment-out the linein inetd configuration) and start nsca asadaemon (e.g., ser vi ce nsca start).

Passive monitoring requires that Nagios support external commands. The packaged default
configuration may have this switched off. To enable external commands, make sure the
check_ext ernal _comrands parameter is set to 1. This option is usually located in the main
configuration file, nagi os. cf g. Nagioswill need to be restarted for thisto have an effect.

Make sure Nagios can create the external command socket. The default location iswithinthe/ var /
| og/ nagi os/ r wdirectory. You may need to change the owner of that directory to the user the
Nagios daemon uses (typicaly nagi 0s).

If there are problems with communication between MonAMI and nsca, the nsca debugging option
can be useful. Debugging is enabled by setting debug=1 in the nsca configuration file: nsca. cf g.
The debug output is sent to syslog, so which file the information can be found in will depend on the
sysdog configuration. Typically, the output will appear in either / var / | og/ nessages or/ var/
| og/ daenon.

Adding passive services to Nagios

Nagios only accepts passive monitoring resultsfor servicesit knows about. This section describes how
to add additional service definitions to Nagios so MonAMI can provide status information.

Nagios supportstemplateswithinits configuration files. These allow for aset of default service values.
If aserviceinheritsatemplate, then the template valueswill be used unless overwritten. Thefollowing
section gives asuitable template for aMonAMI service; you may wish to change these valuesto better
suite your environment.

48

http://nagios.org/docs/
http://nagios.org/docs/

Configuring MonAMI

define service {

nanme nonani - servi ce
use generic-service
active_checks_enabl ed 0

passi ve_checks_enabl ed 1

regi ster 0

check_command check_nonam _dunmy
notification_interval 240
notification_period 24x7
notification_options c,r

check_peri od 24x7

cont act _groups nonani - adni ns
max_check_attenpts 3

nor mal _check_i nterval 5

retry_check_i nterval 1

Note how the active checks are disabled, but passive checks are alowed. Also, the
cont act _gr oups has been set to monami - adni ns. Either this contact group must be defined,
or avalid group be substituted.

In the above template, acheck _command was specified. Nagios requires this value to be set, but as
active checks are disabled, any valid command will do. To keep things obvious, we use the explicit
check_rmonam _dunmmy command. The following definition is valid and can be placed either in
comands. cf g or in some local collection of extra commands.

define command {
command_nane check_rmonanmi _dummy
command_l i ne [bin/true

The final step is to add the services Nagios is to accept status information. These definitions will
allow MonAMI to upload status information. The definitions should go within one of the Nagios
configuration files mentioned by cf g_fi | e=innagi os. cf g.

The following two examples configure specific checks for a named host.

define service {

use nonami - servi ce

host _nane gridol

servi ce_description TOMCAT_WEB_THREADS _CURRENT
}
define service {

use nonami - servi ce

host _nane gridol

servi ce_description TOMCAT_WEB_THREADS_| NUSE

The following example shows a service check defined for a group of hosts. Hosts acquire the service
check based on their membership of the hostgroup. This is often more convenient when several ma-
chines are running the same service.

define hostgroup {

host gr oup_nane DPM pool _nodes

al i as Al'l DPM pool nodes

menber s di sk001, disk002, disk003, disk005, disk013
}
define service{

use nonani - servi ce

host gr oup_nane DPM pool _nodes

servi ce_description DPM free_space

49

Configuring MonAMI

Configuring MonAMI

Toallow MonAMI to report the current state of vari ous services, one must configure anagiosreporting
target. Thisdescribes both the machineto which MonAMI should connect, and the servicesthat should
be reported.

The host attribute describes the remote host to which status information should be sent. If no host
is specified, MonAMI will attempt to contact nsca running on the machine on which it is running
(I ocal host). Theport attribute describes on which TCP port the nsca program is listening. If no
port isspecified, then the nsca default port is used.

To be useful, each nagios target must define at least one service. Each service must have a corre-
sponding definition within Nagios (as described above), else Nagios will ignore the information. To
define aservice, theser vi ce atributeis specified. Theser vi ce values have the following form:
short nanme : Nagi os nane

short name asimple name used to associate the service with the various check attributes.

Nagi os name thenameof theservicewithin Nagios. Thisistheser vi ce_descri pti onfield
(as shown above). It is aso the name the Nagios web interface will show.

Two example service definitions are given below. A nagios target can have an arbitrary number of
definitions.

service
service

tcat-threads, TOMCAT_WEB_THREADS_| NUSE
tcat - process, TOMCAT_PROCESS

Given a service definition, one or more check attributes must be defined. The checks determine
the status (OK, Warning or Critical) of a service. The check values have the following form:
short nane : data source, warn value, crit val ue

These fields have the following meaning:

short name the short name from the corresponding ser vi ce definition.

dat a souce the path within a datatree to the metric under consideration.

war n val ue thefirst valuethat metric can adopt where the check is considered in Warning status.
crit val ue thefirst valuethat metric can adopt where the check is considered in Critical status.

When multiple check attributes are defined for aser vi ce, al the checks are evaluated and the
ser vi ce adopts the most severe status. In order of increasing severity, the different status are OK,
Unknown, Warning Critical.

Examples of MonAMI configuration

The following is an example of a complete definition. A single service is defined that has a single
check, based on output from the nut plugin (see Section 3.4.10, “NUT".

[nagi os]
service = ups-tenp, Tenperature
check = ups-tenp, nut.nyups.ups.tenperature, 25, 35

Thestatusof Tenper at ur e dependsonnut . apc3000. ups. t enper at ur e. Ifitisstrictly less
than 25 Tenper at ur e has status OK. If 25 or more, but strictly less than 34 it has status Warning
and if 35 or greater it has status Critical.

Another example, again using output from the nut plugin.

50

Configuring MonAMI

[nagi os]

service = ups-volt, Mins
ups-volt, nut.nyups.input.voltage.instantaneous, 260, 280
ups-vol t, nut.nyups.input.voltage.instantaneous, 210, 190

check
check

The Mai ns service is OK if the mains voltage lies between 210 V and 260 V, between 190 V and
210V or between 260 V and 280 V its Warning and either less than 190 V or greater than 280 V its

considered Critical.

Attributes

host string, optiona
port integer, optional
passwor d string, optional
ser Vi ce string, optional

check string, optional

| ocal host string, optiona

3.5.10. null

the hostnameto which the reporting plugin should connect. The
default valueis| ocal host .

the port to which the plugin should connect. The default value
is 5667, the default for nsca.

the password used for this connection. Defaults to not using a
password.

defines aservice that isto be reported to Nagios. Theformat is
short nanme : Nagi os nane.

defines a check for some service. A check is something that
can affect the status of the reported service. The format is
short name : data source, warning val ue,
critical value.

definesthe namethe nagios plugin reportsfor itself when send-
ing updates. By default, the plugin will use the FQDN. Specify
this attribute if thisisincorrect.

In addition to providing data (albeit, an empty datatree), the null plugin can also act as a reporting
plugin, but one that will discard any incoming data.

A null target will act as an information sink, allowing monitoring activity to continue without the

information being sent anywhere.

Attributes

The null plugin, used as awriter, does not accept any attributes.

3.5.11. SAM

The Service Availability Monitoring (SAM) is an in-production service moni-
toring system based in CERN. The GOC Wiki [http://goc.grid.sinica.edu.tw/gocwi-
ki/Service_Availability_Monitoring_Environment] describes SAM further. Also available is a web-
page describing the latest results [https://lcg-sam.cern.ch:8443/sam/sam.cgi].

The sam plugin allows information to be sent to a SAM monitoring host based on the methods de-

scribed in the GOC Wiki.

/g Note

This module will have no effect unless the tests are registered prior to running the code.

The CERN server is firewalled, so running tests may not result in immediate success.

Thisiswork-in-progress.

51

http://goc.grid.sinica.edu.tw/gocwiki/Service_Availability_Monitoring_Environment
http://goc.grid.sinica.edu.tw/gocwiki/Service_Availability_Monitoring_Environment
http://goc.grid.sinica.edu.tw/gocwiki/Service_Availability_Monitoring_Environment
https://lcg-sam.cern.ch:8443/sam/sam.cgi
https://lcg-sam.cern.ch:8443/sam/sam.cgi

Configuring MonAMI

Attributes
VOstring, required the VO name to include with reports.
t abl e string, required the name of the table into which the datais to be added.
node string, optiona the node name to report. This defaults to the machine's FQDN.
endpoi nt string, optional the end-point to which the reports should be sent. This defaults

to http://gvdev. cern. ch: 8080/ gri dvi ew ser -
vi ces/ WebAr chi ver

3.5.12. Snapshot

The snapshot reporting plugin stores a representation of the last datatree it received in afile. Unlike
the filelog plugin, snapshot provides no history information; instead, it provides a greater depth of
information about the last datatree it received.

Attributes

fil enane string, required the filename of the file into which the last datatree is stored.

3.5.13. R-GMA

R-GMA (Relationa Grid Monitoring Architecture) is an information system that alows data to be
aggregated between many sites. It is based on the Open Grid Forum (formerly Global Grid Forum)
architecture for monitoring, Grid Monitoring Architecture. R-GMA usesaProducer-Consumer model,
with a Registry to which all producers register themselves periodically. Interactions with R-GMA are
through a subset of SQL. Further information on R-GMA is available from the R-GMA project page
[http://Iwww.r-gma.org/] and the R-GMA in 5 minutes [http://www.r-gma.org/fivemins.html] docu-
ment.

A typical deloyment hasasingle R-GMA server per site (within WL CG, thisisthe MON box). Within
the R-GMA architecture, the producers arelocated within this R-GMA server. Local datais submitted
to the R-GMA server and held there. External R-GMA clients (R-GMA Consumers) contact the R-
GMA Producersto query the gathered data.

Locating the server

Thergma plugin allows MonAMI to upload datato an R-GMA server. Often thiswill not be the same
machine on which MonAMI is running, so MonAMI must either discover the location of the server
or use information in its configuration.

If the machine on which MonAMI is running has a properly installed R-GMA environment, it will
have afiler gma. conf that states which machine is the R-GMA server and details on how to send
the data. Unfortunately, this file can be located in many different locations, so its location must be
discovered too.

If the r gma_hone attribute is specified, MonAMI will try to read the R-GMA configuration file
rgma_hone/ et c/ rgma/ rgnma. conf.

If the rgma_hone attribute is not specified, or does not locate a valid R-GMA configuration
file, several environment variables are checked to see if they can locate a valid R-GMA configu-
ration file. MonAMI will tries the environment variables RGVA HOVE, GLI TE_LOCATI ON and
EDG_LQOCATI ON, each timetrying to load thefile VAR/ et ¢/ r gna/ r gma. conf .

If neither ther grma_hone attribute nor any of the environment variables, if specified, can locate the
r gma. conf file, acouple of standard locations are tried. MonAMI will try to load/ opt / gl i t e/
etc/ rgma/ rgma. conf and/ opt/ edg/ et c/ rgmal/ rgma. conf .

52

http://www.r-gma.org/
http://www.r-gma.org/
http://www.r-gma.org/fivemins.html
http://www.r-gma.org/fivemins.html

Configuring MonAMI

If thefiler gna. conf does not exist, the host and TCP port of the R-GMA server may be specified
explicitly within the configuration file. The attributeshost , port and access state to which host,
on which port and how securely the connection should be made. Usually specifying just the host
issufficient.

In summary, to allow the rgma plugin to work, you must satisfy one of the following:

1. haveavalidr gma. conf filein one of its standard locations (/ opt / gl i t e/ et ¢/ rgma/ or/
opt/edg/ etc/rgnma/),or

2. make sure the MonAMI process has the correct RGVA HOVE, GLI TE _LOCATI ON or
EDG_LOCATI ON environment variable set, or

3. specify ther gna_hone attribute, locating ther gma. conf file, or
4. explicitly set one or more of the following attributes: host , port , access, or

5. run MonAMI on the same machine as the R-GMA server.

Sending data

The R-GMA system resembles a relational database with data separated into different tables. Each
table may have many columns, with data being supplied to any or all of those columns with one set
of data.

Each rgma target delivers data to a single R-GMA table. The table name must be specified and is
givenby thet abl e attribute. How datais delivered within that tableisdefined by col umm attributes.
Each col umm attribute defines a mapping between some metric within a datatree and an R-GMA
column name. The value of acol um attribute hastheform R- GVA col unm : netric nane
[option, option],wherenmetric namne isthe pathtothe metric within the datatree, the square
brackets are optional additional parameters. The following is a simple example that maps the metric
located at t r ansf er . si ze in the datatree to the R-GMA column size.

colum = size : transfer.size

The optional square brackets within the col um attribute values contain options that adjust rgma's
behaviour for this data. These options are a comma separated list of keyword,value pairs, where the
following keywords are available:

maxsi ze The maximum length of a string metric. If a string metric would be too long for this
column, it istruncated so the last five charactersare[. . .] .

The following example configures MonAMI to send a string metric that is never longer than 255
characters; astring will be truncated if it islonger.

colum = filenane : downl oaded. fil ename [naxsize = 255]

R-GMA query types
R-GMA supports four types of query: continuous, history, latest and static.

A continuous query of atablewill return datawhenever it isinserted into that table. All matching data
added to R-GMA will appear in a continuous query. It is possible to issue a continuous query that
includes al old data before waiting for new data. Although this will return historic data, there is no
guarantee for how long the R-GMA server will retain the data.

A reliable archive of the recent history of measurements or events is possible. A history query will
return all matching datastill present, but with a defined retention policy. To be a candidate for history
gueries, data must be marked for historic querieswhen it isinserted into atable. Any data not marked
will beignored by history queries.

53

Configuring MonAMI

R-GMA also understands the concept of the “latest” result. An R-GMA latest query selects the most
recent measurement. However, to be considered, data must be marked as a candidate for latest queries
when added. Any datathat is not so marked isignored.

A static query is aquery that uses R-GMA's support for on-demand monitoring. Currently, rgma has
no support for this query type.

When adding data, MonAMI will mark whether it should be considered for latest or historical queries
(or both). Thisis controlled by the t ype attribute, a comma-separated list of query-types for which
the data should be a candidate.

Datawill always appear in continuous queries. By default, that isthe only query type datawill appear
in. If thet ype list contains hi st or y then datais marked for history queries and will also show up
in history queries. If it contains| at est then it will also show up in R-GMA latest queries.

Storage and retention of data

Datacan be stored onthe R-GMA server in one of two locations: either in memory or within adatabase.
By default, data is stored in memory; however, the MonAMI st or age attribute can specify where
R-GMA will store data. The valid values are menor y and dat abase (for storing in memory and
within a database, respectively).

/g Note

The current implementations of R-GMA support history- and latest- queries only when data is stored within a
database.

In general, data will be retained within R-GMA for some period. How long data is retained depends
on several factors. If the datais neither marked for history nor latest queries then the retention period
is not guaranteed.

The latest retention period is how long datais kept if it is marked for latest queries. R-GMA makes
no guarantee to expunge the data at that precise time. The MonAMI default value is 25 minutes. This
can be changed by setting the | at est _r et ent i on attribute to the required duration, in minutes.
If the datais not marked (by thet ype attribute) for latest queries then this has no effect.

The history retention period is the period of time after data is added that it is retained for history
gueries. R-GMA will guarantee to store for that period, but may retain it for longer. The MonAMI
default value is 50 minutes, but this value can be changed by setting the hi st ory_retenti on
attribute to the required duration, in minutes. If the data is not marked for history queries then this
has no effect.

Security

The R-GMA service can accept commands through either an insecure (HTTP) or secure (HTTPS)
connection. With the insecure connection, no authentication happens. anyone can insert data. Adding
datainsecurely isthe more simply and robust, but as anyone can send fake datait is not recommended.

With Public Key Infrastructure (PKI), a host proves its identity with credentials that are split into
two separate parts: one part is kept secret and the other is made public. The public part is the X509
certificate, which describes who the server claims to be and is signed by a trusted organisation. The
secret part isthe host's private key. This file must be kept securely and is needed when establishing a
secure connection to verify that the server redlly is as claimed in the certificate.

When attempting to send data via a secure connection, the R-GMA server will only accepted connec-
tions established with avalid X509 certificate, one that the server can verify the compl ete trust-chain.
A valid X509 host certificate has a common name (CN) that is identical to the host's fully qualified
domain name (FQDN). To be useful, the certificate must have been issued by a certificate authority
(CA) that the R-GMA server trusts. Trust, here, issimply that the CA's own certificate appears within
the R-GMA server's CA directory (as specified within the R-GMA server's configuration).

54

Configuring MonAMI

The private key is precious: all security gained from using PKI depends on the private key being
kept secret. It is common practice to allow only the r oot user (and processes running with r oot

privileges) accessto the private key file. However, many programs need to prove they are running on
a particular machine without running “asr oot ", so cannot access the private key directly. To allow
this, short-lived (typically 1 hour) certificates, called proxy certificates, are generated that are signed
by the host certificate. The signing process (and so, generating proxy certificates) requires access to
the host's private key. However, once generated, these short-lived certificates can have more liberal
access policies because, if stolen, they are only valid for a short period.

Unless the host's private key is directly readable (which is not recommended), MonAMI needs to
have access to asupply of valid proxy certificates so it can upload datato an R-GMA server securely.
To achieve this, an external script is run periodically (once an hour, by default) to generate a short-
lived proxy host certificate. Some MonAMI installations will have no X509-PKI files and no need to
upload datato R-GMA. Because of this, the script rgma-proxy-renewal.sh (in the directory / usr /
I i bexec/ monam) is designed to fail quietly if there is no host key and no certificate installed
intheir default locations (/ et ¢/ gri d- security/ host key. pemand/ etc/ gri d-securi -
ty/ host cert. pem respectively).

To generate a proxy certificate, the script will search for one of the proxy generating commands
(vons- proxy-init,lcg-proxy-init,..)instandard locations. It will work “out of the box”
if it can find a suitable command. If it fails, or its behaviour needs to be adjusted, the file / et ¢/
sysconfi g/ nonani should be edited to altered how the script behaves.

All the following options start RGVIA_. To save space, the RGVA_ prefix is not included in the list
below; for example, the option listed as HOST _CERT is actually RGVA_HOST _CERT.

HOST_CERT The location of the host certificate, in PEM format. The default value
is/etc/grid-security/hostcert. pem

HOST_KEY The location of the host private key, in PEM format. The default value
is/etc/grid-security/hostkey. pem

HOST_PROXY_DI R The absolute path to the directory in which the proxy will be stored.
Any old proxy certificates within this directory will be deleted. The
default valueis/ var /1 i b/ monam / r gma

HOST_PROXY_BASENANME The constant part of aproxy certificate filename. Proxy certificatefile-
names are generated by appending anumber to this basename. The de-
fault valueishost pr oxy and an example proxy certificateishost -
pr oxy. 849

PROXY_RENEW CNVD The absolute path to an gl obus- pr oxy-i ni t -like command. By
default, the script will look for one of several commandswithin several
standard locations. Unless the proxy generating command islocated in
anon-standard location or is called something unusual, it is not neces-

sary to specify this option.
MONAM _USER The user account MonAMI runs as. By default thisismonanmi .
PERI OD How often the script is run (in hours). By default, thisis 1 (i.e., one

hour). This variable controls only for how long a freshly made proxy
certificate is valid; to change the rate at which proxy certificates are
made, the cron entry (thefile/ et ¢/ cr on. d/ monami - r gna) must
be altered to a corresponding value.

Dealing with failures

Itis possible that, for whatever reason, an R-GMA server may not be able to receive data for a period
of time; for example, this might happen if the R-GMA server is down (e.g., for software upgrade) or

55

Configuring MonAMI

from network failures. If argma target is unable to send the data, it will store the datain memory and
attempt transmission later. Transmission of unsent datais attempted before sending new data and also
automatically every 30 seconds.

Storing unsent data uses memory, which is afinite resource on any computer. The default behaviour
on some computers is to kill programs that have excessive memory usage; those computers that do
not kill such programs outright will often “swap” memory to disk, resulting much poorer performance
of the computer overall.

To prevent an unavailable R-GMA server from adversely affecting MonAMI, asafety limit is placed
on how much unsent data is stored. If the length of the unsent data queue exceeds this limit then the
oldest datais thrown away to make space for the new data.

The default behaviour isto limit the backlog queue to 100 datatrees. How quickly thislimit isreached
will depend on how fast datais sent to an rgma plugin. The backlog queue limit can be altered through
thebackl og attribute, although a minimum back!| og value of 10 is enforced.

Example usage

The following example configuration monitors the “myservice” processes every minute and records
the number that arein running (or runable), sleep and zombie states. Thedatais stored in the (fictitious)
R-GMA table myServiceProcessUsage. Thetable has three fields: running, sleeping and zombie. The
data delivered from the process target (srv_pr ocs) is uploaded to the rgma target (srv_r gna)
and matches each of the three column names.

[process]
name = Srv_procs
count = procs_running : nyservice [state=R]
count = procs_sleeping : nyservice [state=S]
count = procs_zonbie . nyservice [state=Z]
[sanpl e]
interval = 1m

read = srv_procs
wite = srv_rgma

[rgma]
name = srv_rgna
tabl e = nyServi ceProcessUsage

colum = running : srv_procs.count.procs_runni ng
colum = sleeping : srv_procs. count.procs_sl eepi ng
colum = zonbie . Srv_procs. count. procs_zonbi e
Attributes
t abl e string, required the table name MonAMI will append data to.
col um string, required the mapping between a MonAMI metric name and the corre-

sponding R-GMA column name. In general, there should be
acol um attribute for each column in the corresponding R-
GMA table.

The col um attribute takes values like:

rgma columm : netric nane [options]

where nmetric name is the path to some metric with-
in the datatree and opti ons is a comma-separated list of
keyword,value pairs. If no optionsare needed, the square brack-
ets can be omitted.

56

Configuring MonAMI

r gme_hone string, optional

host string, optional

port integer, optional

access string, optiona

t ype string, optional

st or age string, optional

| at est _retenti on integer,
optional

hi story_retenti on integer,
optional

backl og integer, optional

3.6. sample

The configuration file can have one or more sample targets (or sample for short). A sample target
aggregatesinformation collected from one (or more) targets. The aggregated dataisthen sent off to one
(or more) targets. The targets do this based on either the current time or when another target requests
the data. Generally speaking, you want at least one sample target in MonAMI configuration files.

3.6.1.

The read attribute

If the usual environment variables are not specified or do
not point to a valid rgma. conf file and rgma_hone
has been specified, MonAMI will attempt to parse the file
rgma_hone/ et c/ rgma/ r gma. conf for detailsonhow to
contact the R-GMA server.

the host to which MonAMI should connect for submitting da-
ta. Default valueis| ocal host . It is recommended that this
valueisonly used if you do not haveanr gma. conf file.

the TCP port to which MonAMI should connect when submit-
ting data. Default value is 8080 when connecting insecurely
and 8443 when connecting securely.

this attribute will determine whether to use SSL/TL S-based
security when connection to the R-GMA server. A value of
secur e will result in attempting SSL/TL S-based mutual au-
thentication; avalue of i nsecur e will use an insecure HTTP
transport. By default, secure access will be used.

a comma-separated list of R-GMA queries for which the data
should be a candidate. Added data will always show up during
continous queries. Specifying hi st or y will mark the data so
it is also a candidate for history queries. Similarly, specifying
| at est marksdataso it isalso acandidate for latest queries.

the type of storage to request. This can be either nenory or
dat abase. The default valueisnenor y.

when inserting data that is marked for “latest” queries, thisis
the period of time after datais added that it is guaranteed to be
present. Thevalueisin minutes, thedefault valueis 25 minutes.

when inserting data that is marked for “history” queries, thisis
the period of time after datais added that it is guaranteed to be
present. The value isin minutes, the default being 50 minutes.

The maximum length of the unsent data queue whilst waiting
for an R-GMA server. If the backlog of datatrees to send to an
R-GMA server exceeds this value, then the oldest datatree is
thrown away. The default value is 100 with a minimum value
of 10 being enforced.

The r ead attribute describes from which monitoring targets a sample target should get its data. In
its simplest form, this is a comma-separated list of monitoring targets. When fresh data is needed,
the sample target will acquire data from all the named targets and aggregate the data. The following
exampl e takes data from a mysgl and apache target.

[nysal]

user = nonam

57

Configuring MonAMI

3.6.2.

password = not-very-secret

[apache]
name = ny-apache

[sanpl e]
read = ny-apache, nysq

Data is made available in a tree structure. sample targets can select parts of the datatree rather than
taking all available data. Parts of a datatree are specified by stating the path to the metric or branch
of interest. A dot (.) is used to separate branches within the datatree. Also, parts of the tree can be
excluded by prefixing an entry with the exclamation mark (!).

In the following example, the sample target takes the t hr eads data from the my- apache target,
but not the number of threads in keep-alive state. The sample also aggregates data from the mysql
target's “uptime”’ value.

[mysql]

user = nonami

password = not-very-secret
[apache]

name = ny-apache

[sanpl e]
read = ny-apache. Threads, !ny-apache. Threads. keep-alive, \

mysql . uptinme

Timed sample targets

Timed samples are sample targets that have an i nt er val attribute specified. Specifying an i n-
t er val will result in MonAMI attempting to gather data periodically. Thisis useful for generating
graphs or “push”ing data to reporting targets, such ganglia (see Section 3.5.3, “Ganglia’) or filelog
(see Section 3.5.1, “filelog”).

Thei nt er val value specifies how long the sample section should wait before requesting fresh data.
The time is given in seconds by default or as a set of qualified numbers (an integer followed by a
multiplier). Following a number by s implies the number is seconds, mimplies minutes, h implies
hours, d implies days and "w" implies weeks.

Here are some examples:

interval =5 every five seconds,
i nterval = 5s every five seconds,
interval = 2m every two minutes,
interval = 3h 10s every three hours and 10 seconds.

When triggered by the timer, the sample target collects data and sends the aggregated data to one or
more reporting targets. Thewr i t e attribute is a comma-separated list of reporting targets to which
data should be sent.

The following example records the number of threads in each state in alog file every 2 minutes.

[apache]

[sanpl e]

interval = 2m

read = apache. Threads
wite = filelog

[filelog]

58

Configuring MonAMI

file = /tnp/output

3.6.3. Named vs Anonymous samples.

3.6.4.

As with monitoring and reporting targets, a sample target can be assigned a name using the nane
attribute. These sample targets are named samples. If no nane is specified then the sample is an
anonymous sample. As with all other targets, named samples must have names that are unique and
not used by any other target.

However, unlike named monitoring and reporting targets, it is OK to have multiple anonymous (un-
named) sample targets. Anonymous samples are given automatically generated unique names. Al-
though it is possible to refer to an anonymous sample by its generated name, the form of these names
or the order in which they are generated is not guaranteed. Using an anonymous sample's generated
nameis highly discouraged: don't do it!

Named samples can be used asif they were amonitoring target. When datais requested from a named
sample, the sampl e requests data from its sources and returns the aggregated information. The follow-
ing example illustrates this.

[nysql]
user = nonani
password = sonet hi ng- secr et

[apache]

[sanpl e]

nane = core-services
read = apache, nysq
cache = 60s

[sanpl e]

interval = 60s

read = core-services
wite = filelog

[filelog]
file = /tnp/output

Adaptive monitoring

Adaptive monitoring is aform of internally-triggered monitoring that is not necessarily periodic. Un-
der stable conditions, adaptive monitoring will be periodic; however, if the monitored system takes
increasingly longer to reply (e.g., suffersincreased load), adaptive monitoring will adjust by request-
ing dataincreasingly less often.

Overview

Fixed-period monitoring (e.g., monitoring once every minute) is commonly used to monitor services.
This data can be plotted on a graph to show trends in activity, service provision, resource utilisation,
etc. It can also be recorded for later analysis. It also alows status information (e.g., number of con-
nected) to be converted into event-based information (e.g., too many connections detected) within a
guaranteed maximum time.

When monitoring a service, the data-gathering delay (between the monitored system receiving a re-
quest for the current status and delivering the data) should be small compared to the time between
successive requests. If you are asking a database for its current status once every minute, it should not
take this database 50 seconds to reply! There are two reasons why thisis important:

First, it isimportant that the monitored system is not overly affected by MonAMI. There may be no
way of knowing whether an observed large data-gathering delay is due to MonAMI; but whatever the
cause, it suggests that MonAMI should not be monitoring so frequently.

59

Configuring MonAMI

Second, MonAMI has no idea whether the data-gathering delay occurred before the service recorded
itscurrent state or after. If thesize of thisuncertainty isabout the samesizeasthesample'si nt er val ,
then there's little point sampling this often.

Rather than maintaining a constant sampling period (e.g., once every minute), adaptive monitoring
works by maintaining a constant duty-cycle. The duty-cycle is the percentage of the period spend
“working”. If an activity is repeated every 40 seconds with the system active for the first 10 seconds
the duty cycleis 25%; if the situation changes so it's now active for 30s every 40s then the duty cycle
will have increase to 75%.

Whenever MonAM I acquires datafrom amonitored service, it keepsarecord of how long it took to get
the monitoring data. It usesthat information to adjust an estimate of how long the next dataacquisition
will take. The process is described in Section 3.3.4, “Estimating future data-gathering delays’. This
estimate, along with the desired sampling period allows MonAMI to estimate the duty-cycle of the
next sample. MonAMI can then adjust the sampling period to try to keep this close to the desired
duty-cycle.

In addition to the desired duty-cycle, there are two other parameters that affect adaptive monitoring:
alower- and upper- bound on the delay.

Thelower-bound on the delay isthe smallest delay between successive requests MonAMI will allow.
If aserviceissolightly loaded that it is responding almost instantaneously then the lower-bound limit
will prevent MonAMI from sampling too fast. Thei nt er val attribute gives the lower-bound when
MonAMI is adaptively sampling.

The upper-limit is the largest delay between successive requests: the adaptive monitoring will not
sample less frequently that this limit. Thisis useful should, for whatever reason, a service takes an
anomalously long timeto reply. Without an upper-limit, MonAMI would adjust the sampling interval
to compensate for this anomal ous delay and might take an arbitrarily long time to return to amore nor-
mal sampling period. Thesample's| i m t attribute provides this upper-limit to adaptive monitoring.

Adaptive monitoring as a safety feature

Time service spends
gathering monitoring dat:
: :

g
A

o 0
i i
i
i i
i
i i
i

A\t

B AN
B AN

‘
A\

S WAL

SXTXY
AW
B AN

I IO I I LIS

H
d
"
]
"
]
H
a
H
4
u
]
"
]
n
i
H
4

me

NN

> JCINTX TN
B ARARLRARRARARANY

L T ————

i
i
i
i
i

t

ﬂ
o

Arrows are requests for data from MonAMI Duty-cycle would exceed 50%

Figure 3.7. Adaptive monitoring increasing sampling interval in response to
excessive server load.

Adaptive mode is enabled by default with atarget duty-cycle of 50%. Thisis meant as a safety feature
and anticipates that the observed duty-cycle, under normal conditions, will be less than 50%: if sam-
pling once every minute, we expect gathering of data to take less than 30 seconds.

Whilst the duty-cycleislow, MonAMI will conduct periodic sampling; however, should the measured
duty-cycle exceed the 50% limit, the monitoring will switch into an adaptive mode and MonAMI will
sample less often. This could be due to any number of reasons; but, once the system has recovered
and the duty-cycle has dropped to below the 50% limit, MonAMI will switch off the adaptive timing
and resume periodic monitoring.

If MonAMI switches to adaptive monitoring too often then the 50% target may be too low or the
sampleinterval is set too small. Either sample less often (increasethei nt er val attribute) or set an
explicit dut ycycl e attribute value greater than 50%. Specifying adut ycycl e value of zero will
disable adaptive mode, and so enforce periodic monitoring.

60

Configuring MonAMI

Thereiscurrently no support within MonAMI for extending the adaptive monitoring support to include
on-demand monitoring flows. This is because none of the currently available on-demand reporting
systems provide the facility to indicate that they should sample less frequently.

Adaptive monitoring by default

3.6.5.

If asampletarget'sdut ycycl e attribute is set to adesired duty-cycle and thei nt er val attribute
value is set sufficiently small then the sample will operate in adaptive mode by default. Adaptive
monitoring isthen elevated from a safety feature to being the normal mode of operation for thissample
target.

If noi nt erval isset, adefault interval value of one second is used. This places a lower-bound on
the sampling frequency: MonAMI will not attempt to monitor more frequently than once per second.

Adaptive monitoring has strengths and weaknesses compared to periodic monitoring. Thereis greater
certainty that the monitoring is not overly affecting your monitored systems. However, adaptive mon-
itoring is a new feature. Support within the various reporting systems for this mode of operating will
vary, and analysing the resulting data is more complex.

Sample attributes

In summary, each sample section accepts the following options:

i nt erval period, optional specifieshow often data should be collected. Theformat isase-
ries of numbers, optionally qualified, separated by white space,
for example1lh 2m 30s would repeat every 1 hour, 2 minutes
and 30 seconds. Secondsisassumed if no qualifier is specified.
Thetota interval isthe sum of all numbers present.

If no interval and no duty-cycle is specified, the sample will
never trigger data acquisition. Instead it will act as an aggrega-
tor of data, requesting data only on-demand.

If adutycycl e attribute is specified, the i nt erval at-
tribute specifies alower-bound on the sampling period during
adaptive mode monitoring. If noi nt er val isspecified, ade-
fault lower-bound of one second is used. Setting ani nt er -
val of zero permits arbitrarily short sample periods (not rec-
ommended).

r ead string, required aread string specifies which sourcesto query and which infor-
mation to report back. The format is a comma-separated list of
definitions. Each definition is either a target name or a target
name, followed by aperiod (.), followed by the name of some
part of that target's datatree. If only the target is specified, the
whole datatree isreferred to; if the part of the datatree referred
to isabranch-node, then any data below that branch isreferred
to. Any definition can be negated by starting with an exclama-
tion mark (!), which makes sure that element is not included
in the report. For example:

foo, bar, !bar.uninportant, baz.inportant

wouldincludeall datafromf 00, all frombar except that with-
in the bar . uni npor t ant branch, and data from baz con-
tained within the i nport ant branch. The names f oo, bar
and baz are either defined by some target's nane attribute, or
the default name taken from the target's plugin name.

61

Configuring MonAMI

wr i t e string, optional a comma-separated list of targets to whom the collected infor-
mation will be sent. This attribute must be specified if the sam-
pleisinternaly triggered (either i nt er val or dutycycl e
attributes are set).

dut ycycl e percent, optional the desired or threshold duty-cycle value for monitoring using
adaptive mode. MonAMI will measure and adjust the sampling
period to keep the measured duty-cycle less than or equal to
thisvalue. Upper- and lower-bounds will prevent sampling too
infrequently or too often. If thei nt er val attribute is speci-
fied but dut ycycl e isnot, adefault value of 50% is used.

[imt period, optional The upper limit to the sampling period for adaptive monitor-
ing. MonAMI will never sample lessfrequently that this. If not
specified, a default value is used. The default value is twenty
times the interval attribute, if specified, or twenty minutes if
not.

3.7. Configuring Event-based Monitoring

3.7.1.

Some monitoring involves capturing that a particular activity happened, when it happened and some
metadata associated with the activity. A concrete example of event monitoring is watching file trans-
fers from a web-server: one might wish to monitor for requests for missing files (404 HTTP sta-
tus-code) to be alert to some broken part of aweb-site. One might al so look for which parts of awebsite
are under heavy load, so to better load-balance the operation.

With any event thereis some associated metadata. For aweb request, this metadata includes the web-
browser's User-Agent string, the browser's hostname (or | P address), how much datawas transferred,
etc. Within MonAMI, thisinformation is presented as a datatree. Events are merely new datatrees that
can be directed to one (or more) reporting targets.

A monitoring target that provides events typically will split those events into separate channels. The
channels form a hierarchy of different activity. For example, an apache target can be configured to
provide events based on HT TP requests the Apache server receives. These events can be provided as
theaccess channdl. Events from the access channel can be further divided into events from the
access. 1xx, access. 2xx, access. 3xx and access. 4xx channels based on the resulting
HTTP status-code. Theaccess. 4xx channel isfurther subdivided based on the actual code, so into
access. 4xx. 401, access. 4xx. 402 and so on.

dispatch

The dispatch targets describe which events are to be monitored, what information is to be send and to
which reporting targetstheinformation isto be sent. Event monitoring works using asubscription mod-
el. Thedispatch target subscribesto one or more channelsto receive eventsthat match. A dispatch that
subscribes to abranch (within a channel hierarchy) will receive all events that match any of the more-
specific events: subscribing to access. 4xx will receive events on channel access. 4xx. 401,
access. 4xx. 402, access. 4xx. 403, and so on.

When receiving adatatree, the dispatch can select some subset of the available data. Each event might
have alarge amount of information that, in some particular case, isnot needed. Thesel ect attribute
specifies which data is needed. It uses the same format as the sample target's r ead attribute (see
Section 3.6.1, “The read attribute”).

Finally, a dispatch section must specify to which reporting target the datatree isto be sent. Thesend
attribute contains a comma-separated list of reporting targets to which the data should be sent.

A simple exampleis:

[apache]

62

Configuring MonAMI

|l og = access: /var/log/ apache/ access. | og [conbi ned]

[di spat ch]

subscri be = apache. access. 4xx. 404
sel ect = apache. user - agent

send = apache- 404- useragent -1 og
[filelog]

name = apache-404-useragent-1| og
filenane = /tnp/ monam - apache-ua. | og

3.8. Example configurations

3.8.1.

3.8.2.

Thefollowing section contains some exampl e configurations. The first three exampl es show examples
of the three data-flows: on-demand, polling and event monitoring. The fourth example shows a more
complicated example, which includes all three monitoring flows.

For simplicity, all examples are presented asasinglefile. Thisfile could be/ et ¢/ monami . conf,
or (with the default configuration) somefilewithinthe/ et ¢/ nonani . d/ directory. With complex
configuration, the monitoring targets, reporting targets, and sample or dispatch targets may bein sep-
aratefiles (asdescribed in Section 3.2.3, “ Auxiliary configuration file directories’). However the con-
figuration is split between files, provided the targets are defined the examples will work.

On-demand monitoring example

This example shows how to configure MonAMI to monitor multiple targets: alocal MySQL database,
alocal and remote Apache webservers with KSysGuard. The sample acts as an aggregator, alowing
K SysGuard to see al three monitoring targets.

Theresults are cached for ten seconds by the sample target. This prevents the KSysGuard target from
sampling too fast, whilst allowing other (undefined, here) monitoring activity to continue at faster
rates.

Qur |ocal MySQL instance
[nysql]

user = nonani

password = npnami - secr et

Qur |ocal Apache server
[apache]
name = apache-test

A renote Apache server
[apache]
name = apache-public
host = www. exanpl e. com

Put together nonitoring targets for ksysguard
[sanpl e]

name = ksysguard-sanpl e

read = apache-test, apache-public, nysq

cache = 10

[ksysguard]
read = ksysguard-sanpl e

Polling monitoring example

The following example configuration has MonAMI recording the Apache server's thread usage and a
couple of MySQL parameters. The results are sent to Gangliafor recording and plotting. The Apache
and MySQL monitoring occur at different rates (30 seconds and 1 minute respectively).

63

Configuring MonAMI

3.8.3.

3.8.4.

Qur |ocal apache server
[apache]

Qur dat abase

[nysql] _
user = nonam
password = nonani - secr et

Every 30 seconds, send current thread usage to our internal
gangli a.

[sanpl €]

interval = 30

read = apache. Thr eads

wite = internal -ganglia

Every minute, send sone basic DB usage stats
[sanpl €]
interval = 1m
read = nysql. Network. Connections. current, \
nysql . Executi on. Open. t abl es. current
wite = internal -ganglia

Ganglia, nmaking sure we send data to an internally connected N C

[gangli a]
name = internal-ganglia
mul ticast_if = ethl

Event monitoring example

The following example shows event-based monitoring. The apache target is configured to watch the
access log file, which contains alog of accesses to the “public” virtual host.

The dispatch subscribes to those transfer requests that result in a HTTP 404 error code (“file not
found”). Of the available datatree, only the referrer and user-agent are selected for forwarding to the
publ i c-404-1 ogfi | e filelog target.

Qur |ocal apache server
[apache]
log = public_access : /var/log/apache/public/access.|og [conbi ned]

Subscribe to those 404 events, sending themto the filelog
[di spat ch]

subscri be = apache. publi c_access. 4xx. 404

sel ect = referrer, user-agent

send = public-404-1ogfile

Log these results.
[filelog]
name = public-404-1ogfile
filenane = /var/| og/ apache/ public/404.1 og

A more complex example

The following example combines all three previous monitoring flows in a single configuration file.
Graphs of Apache thread usage and MySQL database statistics are produced with Ganglia, HTTP re-
queststhat result in a404 error code are recorded and K SysGuard can connect to MonAMI (whenever
the user decides) allowing more detailed monitoring either of the Apache or MySQL services.

Although this example groups similar sections together, this is mainly for readability: the order in
which the targets are defined does not matter, and may be split over several files (see Section 3.2.3,
“Auxiliary configuration file directories”).

H#H#
Reader targets: sources of information

Configuring MonAMI

#H#
[mysal]
user = nonam
password = npnani -secret
[apache]

log = public_access : /var/log/apache/public/access.|og [conbi ned]

#H#
##t Sanpl es
#H#
Every 30 seconds, send current thread usage to our ganglia
[sanpl e]
interval = 30

read = apache. Threads
wite = ganglia

Every minute, send sone basic DB usage stats
[sanpl e]
interval = 1m
read = nysql. Network. Connections.current, \
nmysql . Executi on. Open. t abl es. current
wite = ganglia

Put together nonitoring targets for ksysguard
[sanpl e]

name = ksysguard-sanpl e
read = apache, nysq

cache = 10
#H#
##t Di spatches: directing events to witer targets
#H#

Subscribe to those 404 events, sending themto the filelog
[di spat ch]

subscri be = apache. publi c_access. 4xx. 404

sel ect = referrer, user-agent

send = public-404-1ogfile

#H#
##t Witer targets: those that accept data
#H#

Log for any 404s
[filelog]
name = public-404-1ogfile
filenane = /var/| og/ apache/ public/404.1 og

Listen for ksysguard requests for data
[ksysguard]
read = ksysguard-sanpl e

Ganglia, naking sure we send data to an internally connected N C.
[gangli a]

nanme = internal-ganglia

mul ticast_if = ethl

65

Chapter 4. Security

When running any software some consideration must be made towards the security impact of that
software. MonAMI, like any software, will have an effect on a machine's security risk. This section
aimsto give abrief overview of the likely security risks and what can be done to to reduce them.

4.1. General comments

It isworth pointing out that running MonAMI does not, in and of itself, provide any greatly increased
security risk. There are no known vulnerabilities in the software and the dangers described here are
common for any software that attempts the monitoring activity MonAMI undertakes.

Although this section givesinformation on running MonAMI it isnot, nor can it be, exhaustive. Many
of the security issues will arise from site-specific details so afull analysis can only be done in knowl-
edge of the MonAMI configuration in use along with other factors: technical factors (firewalls, net-
work topology, information storage configuration, ..), usage policies (who else uses the machines
MonAMI runs on?) and other issues ("what information is considered secret?").

Security as a process, not a check list.

One cannot express security as solely alist of things to check or actions to undertake; this includes
the comments in this section. Best-practice (once established) is a guide: a minimal set of activities
or configuration. There will always be aspects too general (e.g. management processes) or too site-
specific (e.g. has software X been configured with option Y disabled) to be included within best-
practice. Security will always require thinking, not just following procedure.

Security in depth.

One cannot rely on any one technology or process to fully protect a site. Limitations in software (or
understanding of that software) may lead to avulnerability in what isthought to beaperfectly protected
system. Moreover, local policies might require running software so there are additional vectors of
attack: risks might have to be balanced against inconvenience.

An effective way of reducing the impact of security exposureisto provide multiple barriers one must
penetrate before a system is compromised. Although each barrier may be imperfect, each will provide
a sufficient challenge that either the attacker will give up (and ook for an easier target) or the attack
is discovered and counter-measures taken.

To illustrate this, consider the mysgl monitoring plugin (Section 3.4.8, “MySQL"). This plugin needs
aMySQL account with which it can log into the database server. The login credentials could be any
valid MySQL user. Although strongly discouraged, this could be the MySQL root user, which has all
administrative privileges.

Whatever MySQL user is used, one would try to ensure no one can discover the username-password
pair. But, if MonAMI isusing aMySQL user with no unnecessary privileges, should someone discover
the username-password pair they would gain little without subsequently defeating the user-privilege
separation within the MySQL server. The barriers they would have to overcome would be:

1. gaining access to the machine (presumably as some user other than user monami)
2. defeating the server'sfile-system permissions (to read the MySQL password)
3. defeat the MySQL server permissions (to gain privileges)

Each barrier isformidable yet potentially vulnerable (either through software bug or from being mis-
configured). Together, the steps required to obtain full access to the database is much harder, suffi-
ciently hard that an attacker would most likely use some other route.

66

Security

4.2. Risks arising from running MonAMI

4.2.1.

4.2.2.

4.2.3.

This section describes some explicit risks that one encounters when running MonAMI. For each sec-
tion, there are a few suggested things to check. The checks are hopefully straightforward; verifying
these items should greatly reduce the risk.

As stated earlier, alist of checks should not be confused with having a secure system. Following best
practise should eliminate or greatly reduce the impact of these risks, but the user should be aware of
them and plan accordingly.

Information distributed too readily.

Sending out information is MonAMI's modus operandi. However, some information is dangerous or
sensitive.

Information might be sensitive for any number of reasons. Monitoring might give an indication of
capacity or utilisation, or the broad direction in which activity is going. Such information might be
sensitive for business. Thieves might target rooms in which computers have been idle for some time.

Dangerous information is not sensitive now, but might be sensitive in the future. Information that
indicates which software and software version is being run could be correlated against databases of
known vulnerabilities. Distributing software version numbersisthe most obvious example of this, but
other information might indicate which software is being run.

Check that...

a. information being sent is not sensitive,

b. the information systems are sufficiently secure,

¢. noinformation that might identify which version of some softwareisbeing run isdistributed where
it might be discovered.

Passwords being stored insecurely

The danger here isthat someone discovers the username-password pair needed to gain access to some
system. The most likely cause is inappropriate file-system permissions.

Using the "security in depth™ concepts, passwords should be created with limited functionality, ideally
with only sufficient privileges to retrieve monitoring information.

Many password-based authentication systems have the option of restricting from which hosts it will
accept credentials. By limiting login via monitoring credentials to be only from the MonAMI host
(whichisperhaps"locahost"), any stolen username-password pair is usel ess unlessthe MonAMI host
is also compromised.

Check that...

a. theMonAMI configuration files are owned by user monami and have read-only permission for that
user and no read permission for anyone else.

b. that user-password pairs used by MonAMI have limited functionality and (ideally) are not shared
with other users.

¢. wherever possible, the monitoring username-password pair should be restricted so it only functions
from the machine on which MonAMI is running.

A bug in MonAMI is exploitable

Any software can have bugs; MonAMI is no exception. Bugs range from the annoying (doesn't work
as specified) through to the dangerous. Perhaps the most dangerousisif, through MonAMI, aremote
user can control files or run commands on the local machine.

67

Security

Although there are no known bugs in MonAMI, it is prudent to assume they exist and to reduce the
impact of them. For this reason, MonAMI supports "dropping root privileges' to switch to running as
some other user. We recommend that this feature be used and the other user be distinct (i.e. not to use
some generic user "daemon" or "nobody"). Someone exploiting MonAMI (should that be possible),
would then only gain the use of an unprivileged user.

To achieve monitoring activity, certain MonAMI configurations accepts some network traffic. Wher-
ever possible, thetraffic to MonAMI should befirewalled. Only network traffic from trusted machines
can reach MonAMI.

Check that...

a. the monamid process is running as an unprivileged user,

b. the unprivileged user cannot cause trouble,

c. network trafficto MonAM | 'sportsissufficiently protected; for example, it passesthrough asuitably
configured firewall.

4.2.4. MonAMI tricked into providing a Denial-of-Ser-
vice attack

Monitoring impacts on the service that is to be monitored. If MonAMI is run such that it attempts to
gather information with high frequency, then it might impact strongly on the service, even providing
a denial-of-service attack.

If properly configured, monitoring that is triggered internally (see Section 3.6.2, “Timed sample tar-
gets’) should pose no problem. On-demand monitoring (for example, the ksysguard plugin, Sec-
tion 3.5.6, “KsysGuard”) could potentialy request monitoring data sufficiently quickly to saturate
MonAMI-core. This might lead to problems with MonAMI and the services being monitored. To re-
duce this, suitable caches can be defined (see Section 3.3.2, “The cache attribute”) and access to on-
demand monitoring should be limited through correctly configured firewalls.

Check that...

a. suitable cache values are specified, especially for any on-demand monitored targets.

b. any on-demand monitoring network port is suitably protected; for example, by using a suitably
configured firewall.

c. theMonAMI configuration files are not world-writable and that any auxiliary configuration direc-
tories (as defined in aconfi g_di r attribute) does not permit normal users to write additional
monitoring configuration.

68

Chapter 5. Further Information

There are anumber of sources for further information:

* The MonAMI website [http://monami.sourceforge.net/] contains up-to-date information about mon-
itoring and reporting plugins

e The MonAMI blog [http://monami-at-large.blogspot.com/] has comments and ideas on monitoring.
* There are various mailing lists for the MonAMI community.

monami-announce a very low volume list for people want to know about future re-
leases of MonAMI. To subscribe, visit the mailman page [https://
lists.sourceforge.net/lists/listinfo/monami-announce].

monami-users alist for people who are using MonAMI. To subscribe, visit the mailman
page [https://lists.sourceforge.net/lists/listinfo/monami-users).

monami-devel alist for people who are working on improving MonAMI. To subscribe,
visit the mailman page [https:/lists.sourceforge.net/lists/listinfo/mona-
mi-devel].

Please send feedback about this document (including any omissions or errors) to the developers mail-
ing list.

69

http://monami.sourceforge.net/
http://monami.sourceforge.net/
http://monami-at-large.blogspot.com/
http://monami-at-large.blogspot.com/
https://lists.sourceforge.net/lists/listinfo/monami-announce
https://lists.sourceforge.net/lists/listinfo/monami-announce
https://lists.sourceforge.net/lists/listinfo/monami-announce
https://lists.sourceforge.net/lists/listinfo/monami-users
https://lists.sourceforge.net/lists/listinfo/monami-users
https://lists.sourceforge.net/lists/listinfo/monami-users
https://lists.sourceforge.net/lists/listinfo/monami-devel
https://lists.sourceforge.net/lists/listinfo/monami-devel
https://lists.sourceforge.net/lists/listinfo/monami-devel

	MonAMI v0.10 User Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. MonAMI architecture
	1.2. The three monitoring flows
	1.3. Datatrees

	Chapter 2. Running MonAMI
	2.1. Options for monamid
	2.2. Testing a configuration
	2.3. Running in production environment
	2.4. Running from within the CVS tree

	Chapter 3. Configuring MonAMI
	3.1. Structure of a configuration file.
	3.2. The [monami] stanza.
	3.2.1. Logging Messages from MonAMI
	3.2.2. Dropping root privileges
	3.2.3. Auxiliary configuration file directories
	3.2.4. Attributes

	3.3. Features common across plugins
	3.3.1. The name attribute
	3.3.2. The cache attribute
	3.3.3. The map attribute
	3.3.4. Estimating future data-gathering delays

	3.4. Monitoring Plugins
	3.4.1. AMGA
	3.4.2. Apache
	3.4.3. dCache
	3.4.4. Disk Pool Manager (DPM)
	3.4.5. Filesystem
	3.4.6. GridFTP
	3.4.7. Maui
	3.4.8. MySQL
	3.4.9. null
	3.4.10. NUT
	3.4.11. Process
	3.4.12. Stocks
	3.4.13. TCP
	3.4.14. Tomcat
	3.4.15. Torque
	3.4.16. Varnish

	3.5. Reporting plugins
	3.5.1. filelog
	3.5.2. FluidSynth
	3.5.3. Ganglia
	3.5.4. GridView
	3.5.5. grmonitor
	3.5.6. KsysGuard
	3.5.7. MonALISA
	3.5.8. MySQL
	3.5.9. Nagios
	3.5.10. null
	3.5.11. SAM
	3.5.12. Snapshot
	3.5.13. R-GMA

	3.6. sample
	3.6.1. The read attribute
	3.6.2. Timed sample targets
	3.6.3. Named vs Anonymous samples.
	3.6.4. Adaptive monitoring
	3.6.5. Sample attributes

	3.7. Configuring Event-based Monitoring
	3.7.1. dispatch

	3.8. Example configurations
	3.8.1. On-demand monitoring example
	3.8.2. Polling monitoring example
	3.8.3. Event monitoring example
	3.8.4. A more complex example

	Chapter 4. Security
	4.1. General comments
	4.2. Risks arising from running MonAMI
	4.2.1. Information distributed too readily.
	4.2.2. Passwords being stored insecurely
	4.2.3. A bug in MonAMI is exploitable
	4.2.4. MonAMI tricked into providing a Denial-of-Service attack

	Chapter 5. Further Information

